Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 5903–5910 | Cite as

Microstructure and giant magnetoresistance of FeCo–Cu nanogranular films

  • Changzheng Wang
  • Yiqing Zhang
  • Xiaoguang Xiao
  • Yonghua Rong
  • H. Y. Tsu
Article

Abstract

A series of (Fe50Co50)xCu1−x granular films were prepared using a magnetron controlled sputtering system. The microstructure and giant magnetoresistance (GMR) of FeCo–Cu films deposited at room temperature and then annealed at various temperatures were investigated through transmission electron microscope and conventional four probes method under room temperature, respectively. The results revealed that all FeCo–Cu films consisted of fine FeCo granules uniformly dispersed in the Cu matrix and formed fcc structure. By a non-linear least-squares method, the size distribution of FeCo granules in all as-deposited films satisfied a log-normal function. Upon varying the magnetic volume fraction (x), the GMR of as-deposited FeCo–Cu films reached a maximum of about 0.7% at the volume fraction of 31% FeCo, corresponding to the fact that the GMR has a non-monotonic relationship with the granule size. With increasing the annealing temperature, the GMR of films with lower volume fraction reached a peak at higher temperature, while for films with higher volume fraction the GMR reached a peak at lower temperature. In addition, the relationships between the full width at half maximum (FWHM) or the sensitivity of the GMR and the volume fraction were discussed in detail.

Keywords

Single Domain High Volume Fraction Diffraction Ring Granule Size Giant Magnetoresistance 

Notes

Acknowledgments

This work is financially supported by the Nature Science Foundation of Shandong Province under Grant No. 2005ZX11, Hi-Tech Research and development Program of China under Grant No.2004AA32G090 and National Nature Science Foundation of China under Grant No. 60571062.

References

  1. 1.
    Xiao JQ, Jiang JS, Chien CL (1992) Phys Rev Lett 68:3749CrossRefGoogle Scholar
  2. 2.
    Berkowitz AE, Mitekell JR, Corey MJ et al (1992) Phys Rev Lett 68:3745CrossRefGoogle Scholar
  3. 3.
    Gester A, Ounadjela K, Gregg JF et al (1997) J Magn Magn Mater 165:323CrossRefGoogle Scholar
  4. 4.
    Milner A, Korenblit IYa, Gerber A (1999) Phys Rev B 60:14821CrossRefGoogle Scholar
  5. 5.
    Chen SY, Yao YD, Wu JM (2006) J Magn Magn Mater 304:e37CrossRefGoogle Scholar
  6. 6.
    Kim J-G, Ha J-G (2006) Mater Chem Phys 96:307CrossRefGoogle Scholar
  7. 7.
    Cullity BD (1972) Introduce to magnetic materials. Addison-Wesley, London, p 383Google Scholar
  8. 8.
    Wang H, Li WQ, Wong SP et al (2002) Mater Character 48:153CrossRefGoogle Scholar
  9. 9.
    Zhang S (1992) Appl Phys Lett 61:1855CrossRefGoogle Scholar
  10. 10.
    Honda S, Nawate M, Tanaka M et al (1997) J Appl Phys 82:764CrossRefGoogle Scholar
  11. 11.
    Sang H, Jiang ZS, Du YW (1995) J Magn Magn Mater 140/144:589CrossRefGoogle Scholar
  12. 12.
    Gu RY, Sheng L, Xing DY et al (1996) Phys Rev B 53:11685CrossRefGoogle Scholar
  13. 13.
    Xu C, Li Z-Y (1999) Phys Lett A 258:401CrossRefGoogle Scholar
  14. 14.
    Hütten A, Bernardi J, Nelson C et al (1995) Phys Solidi (A) 150:171CrossRefGoogle Scholar
  15. 15.
    Wang CZ, Guo ZH, Rong YH, Hsu TY (2004) Phys Lett A 329:236CrossRefGoogle Scholar
  16. 16.
    Parent F, Tuaillon J, Stern LB et al (1997) Phys Rev B 55:3683CrossRefGoogle Scholar
  17. 17.
    Peng C, Dai D (1994) J Appl Phys 76:2986CrossRefGoogle Scholar
  18. 18.
    Chien CL (1991) J Appl Phys 69:5267CrossRefGoogle Scholar
  19. 19.
    Xiao JQ, Samuel Jiang J, Chien CL (1993) IEEE Trans Mag 29:2688CrossRefGoogle Scholar
  20. 20.
    Ge S-H, Zhang Z-Z, Lu Y-Y et al (1997) Thin Solid Films 33:311Google Scholar
  21. 21.
    Zhang S, Levy PM (1993) J Appl Phys 73:5315CrossRefGoogle Scholar
  22. 22.
    Wang W, Zhu F, Weng J et al (1998) Appl Phys Lett 72:1118CrossRefGoogle Scholar
  23. 23.
    Hylton TL, Coffey KR, Parker MA et al (1993) Science 261:1021CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Changzheng Wang
    • 1
    • 2
  • Yiqing Zhang
    • 2
  • Xiaoguang Xiao
    • 2
  • Yonghua Rong
    • 3
  • H. Y. Tsu
    • 3
  1. 1.Laboratory of Advanced Materials, Department of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.Department of PhysicsLiaocheng UniversityShandong ProvinceChina
  3. 3.School of Materials Science and EngineeringShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations