Advertisement

Journal of Materials Science

, Volume 42, Issue 19, pp 8230–8235 | Cite as

Deformation tracks distribution in iridium single crystals under tension

  • Peter PanfilovEmail author
Article

Abstract

The deformation tracks distribution in a single crystal of the high melting FCC-metal iridium, which exhibits the cleavage after considerable elongation, is considered. The octahedral slip is the sole deformation mechanism in iridium single crystal at room temperature, and, therefore, its mechanical behavior is similar to the behavior of a FCC-metal. However, in contrast to other FCC-metals, the resource of plasticity of the iridium single crystalline samples is exhausted at the initial/early stages of plastic deformation, when the octahedral slip bands are homogeneously distributed on the working surface and the necking is absent in vicinity of the dangerous crack.

Keywords

Iridium Tensile Axis Back Surface Face Centered Cubic Single Crystalline Sample 

Notes

Acknowledgements

The author would like to thank David F. Lupton, Alexander Yermakov and Boris Adrianovskiy for their help. The research was supported by the Ekaterinburg Non-Ferrous Metals Processing Plant and the Russian Foundation for Basic Research (# 04–03-32073).

References

  1. 1.
    Maddin R, Chen NK (1954) Geometrical aspects of the plastic deformation of metals single crystals. In: Chalmers B, King R (eds) Progress in metal physics, vol. 5. Pergamon Press, London, p 69CrossRefGoogle Scholar
  2. 2.
    Smith MC (1956) Principles of physical metallurgy. Harpers & Brothers, New YorkGoogle Scholar
  3. 3.
    Honeycombe RWK (1972) The plastic deformation of metals. Edward Arnold, LondonGoogle Scholar
  4. 4.
    Hirth JP, Lote J (1968) Theory of dislocations. McGrow-Hill, New YorkGoogle Scholar
  5. 5.
    Yokobori T (1971) An interdisciplinary approach to fracture and strength of solids. Wolters-Noordhoff Scientific Publications, GroningenGoogle Scholar
  6. 6.
    Ashby MF, Gandhi C, Taplin MDR (1979) Acta Metall 27:699CrossRefGoogle Scholar
  7. 7.
    Douglass RW, Krier A, Jaffee RI (1961) Batelle Memorial Institute. Report NP-10939, August 1961Google Scholar
  8. 8.
    Haasen P, Hieber H, Mordike BL (1965) Zt Metallkde 56:832Google Scholar
  9. 9.
    Brookes CA, Greenwood JH, Routbort JL (1968) J Appl Phys 39:2391CrossRefGoogle Scholar
  10. 10.
    Reid CN, Routbort JL (1972) Metall Trans 3:2257CrossRefGoogle Scholar
  11. 11.
    Rice JR (1992) J Mech Phys Solids 40:239CrossRefGoogle Scholar
  12. 12.
    Hecker SS, Rohr DL, Stein DF (1978) Metall Trans 9A:481CrossRefGoogle Scholar
  13. 13.
    Gandhi C, Ashby MF (1979) Acta Metall 27:1565CrossRefGoogle Scholar
  14. 14.
    Panfilov P, Yermakov A, Dmitriev V, Timofeev N (1991) Platinum Metals Rev 35:196Google Scholar
  15. 15.
    Yermakov A, Panfilov P, Adamesku R (1990) J Mater Sci Lett 9:696CrossRefGoogle Scholar
  16. 16.
    Panfilov P (2000) In: Ohriner EK, Lanam RD, Panfilov P, Harada H (eds) Iridium. Proceedings of the International symposium Sponsored by the SMD division of the Minerals, Metals & Materials Society (TMS) Held During the 2000 TMS Annual Meeting in Nashville, Tennessee, March 12–16, 2000. (Publication of TMS, USA, 2000) p 93Google Scholar
  17. 17.
    Berner R, Kronmuller H (1965) Plastiche Verformung von Einkristallen. Springer, BerlinGoogle Scholar
  18. 18.
    Nabarro FRN (1961) Phil Mag 6:1261CrossRefGoogle Scholar
  19. 19.
    Panfilov P, Novgorodov V, Baturin G (1992) J Mater Sci Lett 11:229CrossRefGoogle Scholar
  20. 20.
    Panfilov P (2000) In: Ohriner EK, Lanam RD, Panfilov P, Harada H (eds) Iridium. Proceedings of the International symposium Sponsored by the SMD division of the Minerals, Metals & Materials Society (TMS) Held During the 2000 TMS Annual Meeting in Nashville, Tennessee, March 12–16, 2000. (Publication of TMS, USA, 2000) p 27Google Scholar
  21. 21.
    Fisher JC, Hart EW, Pry RH (1952) Phys Rev 87:958CrossRefGoogle Scholar
  22. 22.
    Hirsch PB, Horne RW, Whelan M (1956) J Phil Mag 1:677CrossRefGoogle Scholar
  23. 23.
    Bailey JE, Hirsch PB (1960) Phil Mag 5:485CrossRefGoogle Scholar
  24. 24.
    Venables JA (1962) Phil Mag 7:1969CrossRefGoogle Scholar
  25. 25.
    Hirsch PB, Howie A, Nicholson RB, Pashley DW, Whelan MJ (1965) Electron microscopy of thin crystals. Butterworths, LondonGoogle Scholar
  26. 26.
    Panfilov P, Yermakov A, Baturin G (1990) J Mater Sci Lett 9:1162CrossRefGoogle Scholar
  27. 27.
    Balk TJ, Hemker KJ (2001) Phil Mag A 81:1507CrossRefGoogle Scholar
  28. 28.
    Brookes CA, Greenwood JH, Routbort JL (1970) J Inst Metal 98:27Google Scholar
  29. 29.
    Cawkwell MJ, Nguyen-Manh D, Woodward C, Pettifor DG, Vitek V (2005) Science 309:1059CrossRefGoogle Scholar
  30. 30.
    Adamesku RA, Barkhatov VA, Yermakov AV (1990) Vysokochistye Veschestva 3:219Google Scholar
  31. 31.
    MacFarlane RE, Rayne RE, Jones CK (1966) Phys Lett 20:234CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Laboratory of StrengthUrals State UniversityEkaterinburgRussia

Personalised recommendations