Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 5941–5948 | Cite as

Shear stress measurement in nickel and nickel–60 wt% cobalt during one-dimensional shock loading

  • J. C. F. MillettEmail author
  • Y. J. E. Meziere
  • N. K. Bourne
Article

Abstract

The shear strength of pure nickel (Ni), and its alloy, Ni–60Co (by wt%), has been determined during one-dimensional shock loading in the impact stress range 0–10 GPa. The influence of the reduced stacking fault energy (SFE) for the Ni–60Co has been investigated. The shear strength (τ) and the lateral stress (σy) both increase with the impact stress for each material. The shear stress has been found to be higher in the nickel than in the alloy. The progressive decrease of the lateral stress behind the shock front indicates an increase of the shear strength. A more complex mechanism of deformation has been found for the alloy since twin formation has been observed in the microstructure, while none has been seen in nickel. It is thought that mechanical twinning plays a predominant role in the deformation mechanism of the alloy resulting in the reduction of the material strength.

Keywords

Shear Strength Shock Front Stack Fault Energy Pure Nickel Lateral Stress 

Notes

Acknowledgements

The authors would like to thank Matt Eatwell, Ivan Knapp and Adrian Mustey for valuable technical support. Andrew Wallwork and Andrew Workman of AWE (Atomic Weapon Establishment) are thanked for their interest and encouragement. This research was funded by the Engineering and Physical Sciences Research Council (Grant no. GR/S07476/01).

References

  1. 1.
    Davison LW, Graham RA (1979) Phys Rept 55:255CrossRefGoogle Scholar
  2. 2.
    Hansen M (1958) Constitution of binary alloys. Mc Graw-Hill, LondonCrossRefGoogle Scholar
  3. 3.
    Gallagher PCJ (1970) Met Trans 1:2429Google Scholar
  4. 4.
    Meziere Y, Millett JCF, Bourne NK (2007) Int J Impact Eng 34:360CrossRefGoogle Scholar
  5. 5.
    Marsh SP (1980) Shock Hugoniot data. University of California Press, Los AngelesGoogle Scholar
  6. 6.
    Trunin RF, Belakiova MY, Zhernokletov MV, Sutulov YN, Izv. Akad. Nauk. SSSR, Fiz Zemli (1991) Bull Acad Sci USSR, Phys. of the solid Earth, 99–109Google Scholar
  7. 7.
    Rose MF, Berger TL, Inman MC (1967) Trans Met Soc AIME 239:1998Google Scholar
  8. 8.
    Kressel H, Brown N (1967) J Appl Phys 38:1618CrossRefGoogle Scholar
  9. 9.
    Grace FI (1969) J Appl Phys 40:2649CrossRefGoogle Scholar
  10. 10.
    Murr LE, Kuhlmann-Wilsdorf D (1978) Acta Metall 26:847CrossRefGoogle Scholar
  11. 11.
    Greulich F, Murr LE (1979) Mater Sci Eng 39:81CrossRefGoogle Scholar
  12. 12.
    Meyers MA, Kestenbach HJ, Soares CAO (1980) Mater Sci Eng 45:143CrossRefGoogle Scholar
  13. 13.
    Kazmi B, Murr LE (1981) In: Meyers MA, Murr LE (eds) Shock waves and high-strain-rate phenomena in metals. Plenum, New York, pp 733–752Google Scholar
  14. 14.
    Follansbee PS, Gray GT III (1991) Int J Plast 7:651–660CrossRefGoogle Scholar
  15. 15.
    Gray GT III (1992) In: Meyers MA, Murr LE, Standhammer KP (eds) Shock-wave and high strain rate phenomena in materials. Marcel Deker, New York, pp 899–911Google Scholar
  16. 16.
    Murr LE, Huang J-Y (1975) Mater Sci Eng 19:115CrossRefGoogle Scholar
  17. 17.
    Rohatgi A, Vecchio KS (2002) Mater Sci Eng A328:256CrossRefGoogle Scholar
  18. 18.
    Rohatgi A, Vecchio KS, Gray GT III (2001) Met Mater Trans A 32A:135–145CrossRefGoogle Scholar
  19. 19.
    Rohatgi A, Vecchio KS, Gray GT III (2001) Acta Mater 49:427CrossRefGoogle Scholar
  20. 20.
    Rohatgi A, Vecchio KS, Gray GT III (2001) In: Staundhammer K, Murr L, Meyers Elsevier M (eds) Fundamental issue and applications of the shock-wave and high-rate phenomena. Amsterdam, pp 25–32Google Scholar
  21. 21.
    Schneider MS, Kad B, Kalantar DH, Remington BA, Kenik E, Jarmakani H, Meyers MA (2005) Int J Impact Eng 32:473CrossRefGoogle Scholar
  22. 22.
    Schneider MS, Kad BK, Gregori F, Kalantar DH, Reminton BA, Meyers MA (2004) Mater Sci Forum 465–466:27Google Scholar
  23. 23.
    Dandekar DP, Martin AG (1980) In: Meyers MA, Murr LE (eds) Shock waves and high-strain-rate phenomena in metals, Plenum, New York, pp 573–587Google Scholar
  24. 24.
    Zaretsky EB, Kanel GI, Razorenov SV, Baumung K (2005) Int J Impact Eng 31:41CrossRefGoogle Scholar
  25. 25.
    Bourne NK (2003) Meas Sci Technol 14:273CrossRefGoogle Scholar
  26. 26.
    Meyer LW, Behler FJ, Frank K, Magness LS (1990) In: Antonio S (ed) 12th Int. Symp. Ballistics, Texas, pp 419–428Google Scholar
  27. 27.
    Rosenberg Z, Partom YJ (1985) J Phys D Appl Phys 58:3072CrossRefGoogle Scholar
  28. 28.
    Millett JCF, Bourne NK, Rosenberg Z (1996) J Phys D 29:2466CrossRefGoogle Scholar
  29. 29.
    Rosenberg Z, Bourne NK, Millett JCF (2006) In: Furnish MD (ed) Shock compression of condensed matter – 2006. AIP Press, Melville, NY, pp 1207–1210Google Scholar
  30. 30.
    Bourne NK, Rosenberg Z (1997) Meas Sci Technol 8:570CrossRefGoogle Scholar
  31. 31.
    Brar NS, Bless SJ (1992) High Pressure Res 10:773CrossRefGoogle Scholar
  32. 32.
    Kanel GI, Razorenov SV, Savinykh AS, Rajendran A, Chen Z (2005) J Appl Phys 98:113523CrossRefGoogle Scholar
  33. 33.
    Bourne N, Millett J, Murray N, Rosenberg Z (1998) J Mech Phys Solids 46:1887CrossRefGoogle Scholar
  34. 34.
    Millett JCF, Bourne NK (2001) J Mater Sci 36:3409CrossRefGoogle Scholar
  35. 35.
    Gray GT, Bourne NK, Millett JCF (2003) J Appl Phys 94:6430CrossRefGoogle Scholar
  36. 36.
    Millett JCF, Bourne NK, Gray GT III, Jones IP (2002) Acta Mater 50:4801CrossRefGoogle Scholar
  37. 37.
    Meziere YJE, Millett JCF, Bourne NK (2006) J Appl Phys 100:033513CrossRefGoogle Scholar
  38. 38.
    Millett JCF, Meziere YJE, Gray GT III, Cerreta EK, Bourne NK (2006) J Appl Phys 100:063506CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. C. F. Millett
    • 1
    • 2
    Email author
  • Y. J. E. Meziere
    • 1
  • N. K. Bourne
    • 3
  1. 1.Defence Academy of UKCranfield UniversityShrivenham, SwindonUK
  2. 2.AWEAldermaston, ReadingUK
  3. 3.University of ManchesterManchesterUK

Personalised recommendations