Advertisement

Journal of Materials Science

, Volume 42, Issue 19, pp 8144–8149 | Cite as

Preparation of nanocomposite for optical application using ZnTe nanoparticles and a zero-birefringence polymer

  • Chie Inui
  • Hiroaki Kura
  • Tetsuya SatoEmail author
  • Yosuke Tsuge
  • Seimei Shiratori
  • Hisanori Ohkita
  • Akihiro Tagaya
  • Yasuhiro Koike
Article

Abstract

Surface-modified ZnTe nanoparticles were mixed in a zero-birefringence polymer matrix. Transmission electron microscopy images revealed that aggregates of ZnTe nanoparticles with a diameter of ∼20 nm were uniformly dispersed in the polymer. The transmittance of ZnTe nanocomposites rapidly decreased at wavelengths shorter than the critical wavelength corresponding to the band gap of ZnTe nanoparticles, an effect which became significant as the volume fraction of particles increased. In this way, the optical characteristic of ZnTe nanoparticles was added to the polymer. The intrinsic zero-birefringence was confirmed in the heat-drawn ZnTe nanocomposites. As the ZnTe nanocomposites were left in air, a lowering of transmittance was observed. This was due to the oxidation of Zn and the resultant deposition of Te in the ZnTe nanocomposite, as the light absorption of Te is significant. The formation of oxygen non-permeable SiO2 films onto the ZnTe nanocomposite by the sol-gel method was useful in preventing oxidation so that the decrement of transmittance decreased from 47.2% to 14.9% at 530 nm near the ZnTe band gap.

Keywords

ZnTe TMOS SiO2 Film MTES Magnetic Nanocomposites 

References

  1. 1.
    Papadimitrakopoulos F, Wisniecki P, Bhagwagar DE (1997) Chem Mater 9:928CrossRefGoogle Scholar
  2. 2.
    Lu C, Guan C, Liu Y, Cheng Y, Yang B (2005) Chem Mater 17:448Google Scholar
  3. 3.
    Firth AV, Haggata SW, Khanna PK, Williams SJ, Allen JW, Magennis SW, Ifor Samuel DW, Cole-Hamilton DJ (2004) J Lumin 109:163CrossRefGoogle Scholar
  4. 4.
    Luccio TD, Laera AM, Tapfer L, Kempter S, Kraus R, Nickel B (2006) J Phys Chem B 110:12603CrossRefGoogle Scholar
  5. 5.
    Beecroft LL, Ober CK (1997) Chem Mater 9:1302CrossRefGoogle Scholar
  6. 6.
    Caseri W (2000) Macromol Rapid Commun 21:705CrossRefGoogle Scholar
  7. 7.
    Barnakov YA, Scott BL, Golub V, Kelly L, Reddy V, Stokes KL (2004) J Phys Chem Solids 65:1005CrossRefGoogle Scholar
  8. 8.
    Gass J, Poddar P, Almand J, Srinath S, Srikanth H (2006) Adv Funct Mater 16:71CrossRefGoogle Scholar
  9. 9.
    Iwata S, Tsukahara H, Nihei E, Koike Y (1997) J Appl Opt 36:4549CrossRefGoogle Scholar
  10. 10.
    Saito H, Zayets V, Yamagata S, Ando K (2003) Phys Rev Lett 90:20Google Scholar
  11. 11.
    Kim TY, Yamazaki Y, Hirano T (2004) Phys Stat Sol (b) 241:1601CrossRefGoogle Scholar
  12. 12.
    Barnakov YA, Scott BL, Golub V, Kelly L, Reddy V, Stokes KL (2004) J Phys Chem Solids 65:1005CrossRefGoogle Scholar
  13. 13.
    Wang TC, Rubner MF, Cohen RE (2002) Langmuir 18:3370CrossRefGoogle Scholar
  14. 14.
    Horikawa A, Yamaguchi K, Inoue M, Fujii T, Arai K (1996) Mater Sci Eng A 217/218:348CrossRefGoogle Scholar
  15. 15.
    Yiyun C, Pingsheng H, Dazhu C, Ronghui C (2005) J Compos Mater 39:19CrossRefGoogle Scholar
  16. 16.
    Lu BC, Cheng Y, Liu Y, Liu F, Yang B (2006) Adv Mater 18:1188CrossRefGoogle Scholar
  17. 17.
    Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706CrossRefGoogle Scholar
  18. 18.
    Ohkita H, Tagaya A, Koike Y (2004) Macromolecules 37:8342CrossRefGoogle Scholar
  19. 19.
    Tagaya A, Ohkita H, Mukoh M, Sakaguchi R, Koike Y (2003) Science 301:812CrossRefGoogle Scholar
  20. 20.
    Kaito C, Nakamura N, Saito Y (1985) Appl Surf Sci 22:604CrossRefGoogle Scholar
  21. 21.
    Mitsui T, Shiratori S (2003) Mater. Res Soc Jpn 28:1211Google Scholar
  22. 22.
    Tadanaga K, Iwashita K, Minami T (1996) Sol-Gel Sci Technol 6:107CrossRefGoogle Scholar
  23. 23.
    Maehara Y, Takenaka S, Shimizu K, Yoshikawa M, Shiratori S (2003) Thin Solid Films 65:438Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Chie Inui
    • 1
  • Hiroaki Kura
    • 1
  • Tetsuya Sato
    • 1
    Email author
  • Yosuke Tsuge
    • 1
  • Seimei Shiratori
    • 1
  • Hisanori Ohkita
    • 2
  • Akihiro Tagaya
    • 2
  • Yasuhiro Koike
    • 2
  1. 1.Faculty of Science and TechnologyKeio UniversityKohoku-ku, YokohamaJapan
  2. 2.Koike Photonics Polymer Project, ERATO-SORSTJapan Science and Technology AgencySaiwai-ku, KawasakiJapan

Personalised recommendations