Advertisement

Journal of Materials Science

, Volume 42, Issue 19, pp 8178–8188 | Cite as

Growth rate of Nb3Sn for reactive diffusion between Nb and Cu–9.3Sn–0.3Ti alloy

  • Ken-ichiro Mikami
  • Masanori KajiharaEmail author
Article

Abstract

In order to examine experimentally the growth behavior of Nb3Sn during reactive diffusion between Nb and a bronze with the α + β two-phase microstructure, a sandwich (Cu–Sn–Ti)/Nb/(Cu–Sn–Ti) diffusion couple was prepared from pure Nb and a ternary Cu–Sn–Ti alloy with concentrations of 9.3 at.% Sn and 0.3 at.% Ti by a diffusion bonding technique. Here, α is the primary solid-solution phase of Cu with the face-centered cubic structure, and β is the intermediate phase with the body-centered cubic structure. The diffusion couple was isothermally annealed at temperatures between T = 923 and 1,053 K for various times up to 843 h. Owing to annealing, the Nb3Sn layer is formed along each (Cu–Sn–Ti)/Nb interface in the diffusion couple, and grows mainly into Nb. Hence, the migration of the Nb3Sn/Nb interface governs the growth of the Nb3Sn layer. The mean thickness of the Nb3Sn layer is proportional to a power function of the annealing time. The exponent of the power function is close to unity at T = 923 K, but takes values of 0.8–0.7 at T = 973–1,053 K. Consequently, the interface reaction at the migrating Nb3Sn/Nb interface is the rate-controlling process for the growth of the Nb3Sn layer at T = 923 K, and the interdiffusion across the Nb3Sn layer as well as the interface reaction contributes to the rate-controlling process at T = 973–1,053 K. Except the effect of Ti, the growth rate of the Nb3Sn layer is predominantly determined by the activity of Sn in the bronze and thus the concentration of Sn in the α phase. As a result, the growth rate is hardly affected by the volume fraction of the β phase, though the final amount of the Nb3Sn layer may depend on the volume fraction.

Keywords

Interface Reaction Diffusion Couple Reactive Diffusion Nb3Sn Layer Backscatter Electron Image Micrograph 

Notes

Acknowledgements

The authors are grateful to Messrs. S. Meguro, K. Wada and H. Sakamoto at Furukawa Electric Co., Ltd., Japan for stimulating discussions. The present study was supported by Furukawa Electric Co., Ltd. The study was also partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

  1. 1.
    Kaufmann AR, Pickett JJ (1970) Bull Am Phys Soc 15:838Google Scholar
  2. 2.
    Suenaga M, Sampson WB (1971) Appl Phys Lett 18:584CrossRefGoogle Scholar
  3. 3.
    Tachikawa K, Yoshida Y, Rinderer L (1972) J Mater Sci 7:1154CrossRefGoogle Scholar
  4. 4.
    Suenaga M, Sampson WB (1972) Appl Phys Lett 20:443CrossRefGoogle Scholar
  5. 5.
    Farrell HH, Gilmer GH, Suenaga M (1974) J Appl Phys 45:4025CrossRefGoogle Scholar
  6. 6.
    Farrell HH, Gilmer GH, Suenaga M (1975) Thin Solid Films 25:253CrossRefGoogle Scholar
  7. 7.
    Dew-Hughes H, Luhman TS, Suenaga M (1976) Nucl Technol 29:268CrossRefGoogle Scholar
  8. 8.
    Murase S, Koike Y, Shiraki H (1978) J Appl Phys 49:6020CrossRefGoogle Scholar
  9. 9.
    Kwasnitza K, Narlikar AV, Nissen HU, Salathé D (1980) Cryogenics 715CrossRefGoogle Scholar
  10. 10.
    Upadhyay P, Samanta SB, Narlikar AV (1981) Mat Res Bull 16:741CrossRefGoogle Scholar
  11. 11.
    Reddi BV, Raghavan V, Ray S, Narlikar AV (1983) J Mater Sci 18:1165CrossRefGoogle Scholar
  12. 12.
    Cheng CC, Verhoeven JD (1988) J Less-Com Met 139:15CrossRefGoogle Scholar
  13. 13.
    Osamura K, Ochiai S, Kondo S, Namatame M, Nosaki M (1986) J Mater Sci 21:1509CrossRefGoogle Scholar
  14. 14.
    Muranishi Y, Kajihara M (2005) Mater Sci Eng A 404:33CrossRefGoogle Scholar
  15. 15.
    Hayase T, Kajihara M (2006) Mater Sci Eng A 433:83CrossRefGoogle Scholar
  16. 16.
    Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (1990) Binary alloy phase diagrams, vol 2. ASM International, Materials Park, Ohio, p 1482Google Scholar
  17. 17.
    Kajihara M, Lim C-B, Kikuchi M (1993) ISIJ Int 33:498CrossRefGoogle Scholar
  18. 18.
    Yamashina T, Kajihara M (2006) Mater Trans 47:829CrossRefGoogle Scholar
  19. 19.
    Jost W (1960) Diffusion of solids, liquids, gases. Academic Press, New York, p 68Google Scholar
  20. 20.
    Kajihara M (2004) Acta Mater 52:1193CrossRefGoogle Scholar
  21. 21.
    Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Oxford Science Publications, Clarendon Press, Oxford, p 603Google Scholar
  22. 22.
    Kajihara M, Yamada T, Miura K, Kurokawa N, Sakamoto K (2003) Netsushori 43:297Google Scholar
  23. 23.
    Yamada T, Miura K, Kajihara M, Kurokawa N, Sakamoto K (2004) J Mater Sci 39:2327CrossRefGoogle Scholar
  24. 24.
    Yamada T, Miura K, Kajihara M, Kurokawa N, Sakamoto K (2005) Mater Sci Eng A 390:118CrossRefGoogle Scholar
  25. 25.
    Kajihara M, Takenaka T (2007) Mater Sci Forum 539–543:2473CrossRefGoogle Scholar
  26. 26.
    Suzuki K, Kano S, Kajihara M, Kurokawa N, Sakamoto K (2005) Mater Trans 46:969CrossRefGoogle Scholar
  27. 27.
    Mita M, Kajihara M, Kurokawa N, Sakamoto K (2005) Mater Sci Eng A 403:269CrossRefGoogle Scholar
  28. 28.
    Takenaka T, Kano S, Kajihara M, Kurokawa N, Sakamoto K (2005) Mater Sci Eng A 396:115CrossRefGoogle Scholar
  29. 29.
    Takenaka T, Kajihara M, Kurokawa N, Sakamoto K (2005) Mater Sci Eng A 406:134CrossRefGoogle Scholar
  30. 30.
    Takenaka T, Kano S, Kajihara M, Kurokawa N, Sakamoto K (2005) Mater Trans 46:1825CrossRefGoogle Scholar
  31. 31.
    Mita M, Miura K, Takenaka T, Kajihara M, Kurokawa N, Sakamoto K (2006) Mater Sci Eng B 126:37CrossRefGoogle Scholar
  32. 32.
    Takenaka T, Kajihara M (2006) Mater Trans 47:822CrossRefGoogle Scholar
  33. 33.
    Takenaka T, Kajihara M, Kurokawa N, Sakamoto K (2006) Mater Sci Eng A 427:210CrossRefGoogle Scholar
  34. 34.
    Yato Y, Kajihara M (2006) Mater Sci Eng A 428:276CrossRefGoogle Scholar
  35. 35.
    Yato Y, Kajihara M (2006) Mater Trans 47:2277CrossRefGoogle Scholar
  36. 36.
    Peterson NL, Ogilvie RE (1960) Trans Met Soc AIME 218:439Google Scholar
  37. 37.
    Shibata K, Morozumi S, Koda S (1966) J Jpn Inst Met 30:382CrossRefGoogle Scholar
  38. 38.
    Hirano K, Ipposhi Y (1968) J Jpn Inst Met 32:815CrossRefGoogle Scholar
  39. 39.
    Funamizu Y, Watanabe K (1971) Trans JIM 12:147CrossRefGoogle Scholar
  40. 40.
    Onishi M, Fujibuchi H (1975) Trans JIM 16:539CrossRefGoogle Scholar
  41. 41.
    Tortorici PC, Dayananda MA (1999) Met Mater Trans A 30A: 545CrossRefGoogle Scholar
  42. 42.
    van Dal MJH, Huibers DGGM, Kodentsov AA, van Loo FJJ (2001) Intermetallics 9:409CrossRefGoogle Scholar
  43. 43.
    Milanese C, Buscaglia V, Maglia F, Anselmi-Tamburini U (2002) Acta Mater 50:1393CrossRefGoogle Scholar
  44. 44.
    Hayashi T, Ito K, Numakura H (2005) Intermetallics 13:93CrossRefGoogle Scholar
  45. 45.
    Tanaka Y, Kajihata M, Watanabe Y (2007) Mater Sci Eng A 445–446:355CrossRefGoogle Scholar
  46. 46.
    Kajihara M, Sakama T (2007) Proc 13th Symp Microjoining Assembly Tech Electronics. Microjoining Commission, Yokohama, 187Google Scholar
  47. 47.
    Naoi D, Kajihara M (2007) 5. Mater Sci Eng A 459:375 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Graduate SchoolTokyo Institute of TechnologyYokohamaJapan
  2. 2.Department of Materials Science and EngineeringTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations