Journal of Materials Science

, Volume 42, Issue 19, pp 8222–8229 | Cite as

Preparation of smooth potassium hexatitanate nanofilms by sol–gel method

  • Q. H. Qian
  • X. F. Zhou
  • Y. Y. Hu
  • Ch. Liu
  • X. Feng
  • X. H. LuEmail author


New nanosmooth potassium hexatitanate films have been prepared on crystalline Si (111) and ITO glass substrates by sol–gel method using Ti(n-OC4H9)4 and CH3COOK as precursors. Atomic force microscopy (AFM) topographic images were analyzed to select the optimal preparation conditions for the films. It is shown that the films consist of flat particles with the ratio of diameter to height around 11. The root mean square (RMS) roughness of the films based on the measurement of an area of 2,000 nm × 2,000 nm in AFM images is 6.4 nm. The crystal growth process of potassium hexatitanate film was characterized by XRD, Raman spectra, and TEM. The results showed that the crystal growth of potassium hexatitanate nanofilm is a confined growth mechanism. Electrochemical measurements demonstrated that the photocurrent of potassium hexatitanate film electrode is more stable than that of TiO2 film electrode.


Atomic Force Microscopy Atomic Force Microscopy Image TiO2 Film Open Circuit Potential Film Electrode 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 20246002 and 20236010), National High Technology Research and Development Program of China (No. 2003CB615700), the Key Science Foundation of Jiangsu Province, China (BK 2004215) and the Key Laboratory of Material-oriented Chemical Engineering of Ministry of Education, China.


  1. 1.
    Urban JJ, Yun WS, Gu Q, Park H (2002) J Am Chem Soc 124:1186CrossRefGoogle Scholar
  2. 2.
    Zhu HY, Lan Y, Gao XP, Ringer SP, Zheng ZF, Song DY, Zhao JC (2005) J Am Chem Soc 127:6730CrossRefGoogle Scholar
  3. 3.
    Ma R, Fukuda K, Sasaki T, Osada M, Bando Y (2005) J Phys Chem B 109:6210CrossRefGoogle Scholar
  4. 4.
    Du GH, Chen Q, Han PD, Yu Y, Peng LM (2003) Phys Rev 67:035323CrossRefGoogle Scholar
  5. 5.
    Corcoran DJ, Tunstall DP, Irvine JT (2000) Solid State Ionics 136/137:297CrossRefGoogle Scholar
  6. 6.
    Bao N, Lu X, Ji X, Feng X, Xie J (2002) Fluid Phase Equilib 193(1–2):229CrossRefGoogle Scholar
  7. 7.
    Choy JH, Lee HC, Jung H, Huang SJ (2001) J Mater Chem 11:2232CrossRefGoogle Scholar
  8. 8.
    He M, Feng X, Lu X, Ji X, Liu CH, Bao N, Xie J (2004) J Mater Sci 39:1CrossRefGoogle Scholar
  9. 9.
    Ogawa M, Kuroda K (1995) Chem Rev 95:399CrossRefGoogle Scholar
  10. 10.
    Yahya RB, Hayashi H, Nagase T, Ebina T, Onodera Y, Saitoh N (2001) Chem Mater 13:842CrossRefGoogle Scholar
  11. 11.
    Yang Z, Bao N, Liu CH, Feng X, Xie J, Ji X, Lu X (2002) Chem J Chinese U 23:1371Google Scholar
  12. 12.
    Airdoldi C, Nunes LM, Farias RF (2000) Mater Res Bull 35:2081CrossRefGoogle Scholar
  13. 13.
    Li JH, Ning XG, Ye HQ, Pan J, Fukunaga H (1997) J Mater Sci 32:543CrossRefGoogle Scholar
  14. 14.
    Feng X, LV J, Lu X, Bao N, Ceng D (1999) Acta Mater Comp Sinica 16:1Google Scholar
  15. 15.
    Ogura S, Kohno M, Sato K, Inoue Y (1997) Appl Surf Sci 121/122:521CrossRefGoogle Scholar
  16. 16.
    Lee HK, Shim JP, Shim MJ, Kim SW, Lee JS (1996) Mater Chem Phys 45:243CrossRefGoogle Scholar
  17. 17.
    Barnes MC, Kumar S, Green L, Hwang NM, Andrea GR (2005) Surf Coat Technol 190(2–3):321CrossRefGoogle Scholar
  18. 18.
    Sandell A, Anderson MP, Alfredsson Y (2002) J Appl Phys 92(6):3381CrossRefGoogle Scholar
  19. 19.
    Hench LL, West JK (1990) Chem Rev 90(1):33CrossRefGoogle Scholar
  20. 20.
    Sammelselg V, Rosental A, Tarre A (1998) Appl Surf Sci 134(1–4):78CrossRefGoogle Scholar
  21. 21.
    Bao N, Feng X, Lu X, Shen L, Yanagisawa K (2004) AIChE J 50:1568CrossRefGoogle Scholar
  22. 22.
    Yu L, He M, Liu C, Lu X, Feng X (2005) Mater Chem Phys 93:342CrossRefGoogle Scholar
  23. 23.
    Liu C, Lu X, Yu G, Feng X, Zhang Q, Xu Z (2005) Mater Chem Phys 94:401CrossRefGoogle Scholar
  24. 24.
    Bamberger CE, Begun GM, Macdougall CS (1990) Appl Spectrosc 44:30CrossRefGoogle Scholar
  25. 25.
    Du GH, Chen Q, Han PD, Yu Y, Peng LM (2003) Phys Rev 67:035323CrossRefGoogle Scholar
  26. 26.
    Byrne JA, Davidson A, Dunlop PSM, Eggins BR (2002) J Photochem Photobiol A: Chem 148:365CrossRefGoogle Scholar
  27. 27.
    Gerischer H, Heller A (1991) J Phys Chem 95:5261CrossRefGoogle Scholar
  28. 28.
    Leng WH, Zhang Z, Zhang JQ, Cao CN (2005) J Phys Chem B 109(31):5008CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Q. H. Qian
    • 1
  • X. F. Zhou
    • 1
  • Y. Y. Hu
    • 1
  • Ch. Liu
    • 1
  • X. Feng
    • 1
  • X. H. Lu
    • 1
    Email author
  1. 1.College of Chemistry and Chemical EngineeringNanjing University of TechnologyNanjingChina

Personalised recommendations