Advertisement

Journal of Materials Science

, Volume 42, Issue 21, pp 8919–8933 | Cite as

Insights into whole bone and tooth function using optical metrology

  • Ron ShaharEmail author
  • Steve Weiner
Nano- and micromechanical properties of hierarchical biological materials

Abstract

Understanding the relations between the mechanical responses of whole entities, their materials properties and their structures, is a challenge. This challenge is greatly enhanced when the material itself is complex, and when the entity it forms has a convoluted shape. It is for these reasons that it is still beyond the state-of-the-art to predict and fully understand the mechanical functions of whole biological entities such as bones and teeth. Recent advances in optical metrology open up new opportunities as they enable the precise and accurate mapping of the manner in which the entire surface of a whole stiff mineralized tissue deforms. Furthermore these data can be obtained non-destructively and without contact with the sample. Data of this kind create the exciting possibility of relating the complex distribution of mechanical properties of loaded biological materials such as bone and teeth and their microstructures to deformations and strains. Such studies could improve our understanding of normal physiological processes such as skeletal aging, as well as disease processes such as osteoporosis. They also provide opportunities for engineers designing bio-inspired materials to study the principles, advantages, and characteristics of the behavior of hierarchical and multifunctional materials.

In this manuscript we review optical metrology methods, highlight studies of whole body function for bones and teeth, and in particular those studies that provide insights into structure-function relations. We also outline the potential for future studies.

Keywords

Cancellous Bone Digital Image Correlation Holographic Interferometry Soft Zone Electronic Speckle Pattern Interferometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to thank Dr. Paul Zaslansky and Dr. Meir Barak for helpful suggestions and discussions. S. W. is the incumbent of the Dr. Walter and Dr. Trude Burchardt Professorial Chair of Structural Biology. Support for this research was provided from grant RO1 DE006954 from the National Institute of Dental and Craniofacial Research to Dr. Stephen Weiner, Weizmann Institute of Science.

References

  1. 1.
    Thompson D (1942) On growth and form. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Mayer G (2005) Science 310:1144CrossRefGoogle Scholar
  3. 3.
    Gao HJ (2006) Int J Frac 138:101CrossRefGoogle Scholar
  4. 4.
    Weiner S, Wagner HD (1998) Ann Rev Mater Sci 28:271CrossRefGoogle Scholar
  5. 5.
    Nanci A (2003) Ten Cate’s oral histology. Mosby, Inc., St Louis, Missouri, USAGoogle Scholar
  6. 6.
    Delmas PD, Tracy RP, Riggs BL, Mann KG (1984) Calcif Tissue Int 36:308CrossRefGoogle Scholar
  7. 7.
    Wang HJ, Tannukit S, Zhu DH, Snead ML, Paine ML (2005) J Bone Miner Res 20:1032CrossRefGoogle Scholar
  8. 8.
    Suresh S (2001) Science 292:2447CrossRefGoogle Scholar
  9. 9.
    Hodge AJ, Petruska JA (1963) In: Ramachandran GN (ed) Aspects of protein structure. Academic Press, New York, p 289Google Scholar
  10. 10.
    Fratzl P, Schreiber S, Boyde A (1996) Calcif Tissue Int 58:341Google Scholar
  11. 11.
    Weiner S, Traub W, Wagner HD (1999) J Struct Biol 126:241CrossRefGoogle Scholar
  12. 12.
    Currey J (2002) Bones. Princeton University Press, PrincetonGoogle Scholar
  13. 13.
    Daculsi G, Menanteau J, Kerebel LM, Mitre D (1984) Calcif Tissue Int 36:550CrossRefGoogle Scholar
  14. 14.
    Houlle P, Voegel JC, Schultz P, Steuer P, Cuisinier FJG (1997) J Dent Res 76:895CrossRefGoogle Scholar
  15. 15.
    Weiner S, Veis A, Beniash E, Arad T, Dillon JW, Sabsay B, Siddiqui F (1999) J Struct Biol 126:27CrossRefGoogle Scholar
  16. 16.
    Scott DB, Simmelin JW, Nygaard V (1974) J Dent Res 53:165Google Scholar
  17. 17.
    Zaslansky P, Friesem AA, Weiner S (2006) J Struct Biol 153:188CrossRefGoogle Scholar
  18. 18.
    Wang R, Weiner S (1998) J Biomech 31:135CrossRefGoogle Scholar
  19. 19.
    Zaslansky P, Shahar R, Friesem AA, weiner S (2006) Adv Funct Mater 16:1925CrossRefGoogle Scholar
  20. 20.
    Tesch W, Eidelman N, Roschger P, Goldenberg F, Klaushofer K, Fratzl P (2001) Calc Tissue Int 69:147CrossRefGoogle Scholar
  21. 21.
    Wang RZ, Weiner S (1998) Connect Tissue Res 39:269Google Scholar
  22. 22.
    Cuy JL, Mann AB, Livi KJ, Teaford MF, Weihs TP (2002) Arch Oral Biol 47:281CrossRefGoogle Scholar
  23. 23.
    Rho JY, Pharr GM (1997) Biomaterials 18:1325CrossRefGoogle Scholar
  24. 24.
    Gasvik KJ (2002) Optical metrology. John Wiley & Sons, LTD, West Sussex, EnglandGoogle Scholar
  25. 25.
    Murphy LA, Prendergast PJ (2005) J Biomech 38:1702CrossRefGoogle Scholar
  26. 26.
    Johnson EW, Castaldi CR, Gau DJ, Wysocki GP (1968) J Dent Res 47:548Google Scholar
  27. 27.
    Asundi A, Kishen A (2000) Proc Inst Mech Eng [H] 214:659Google Scholar
  28. 28.
    Asundi A, Kishen A (2000) Arch Oral Biol 45:543CrossRefGoogle Scholar
  29. 29.
    Asundi A, Kishen A (2001) J Biomed Opt 6:224CrossRefGoogle Scholar
  30. 30.
    Asundi A, Kishen A (1999) Endod Dent Traumatol 15:83CrossRefGoogle Scholar
  31. 31.
    Kishen A, Asundi A (2005) J Biomed Opt 10:034010CrossRefGoogle Scholar
  32. 32.
    Kishen A, Ramamurty U, Asundi A (2000) J Biomed Mater Res 51:650CrossRefGoogle Scholar
  33. 33.
    Kishen A, Asundi A (2002) J Biomed Opt 7:262CrossRefGoogle Scholar
  34. 34.
    Peindl RD, Harrow ME, Connor PM, Banks DM, D’alessandro DF (2004) Exp Mech 44:228CrossRefGoogle Scholar
  35. 35.
    Meyer C, Kahn JL, Boutemi P, Wilk A (2002) J Craniomaxillofac Surg 30:160Google Scholar
  36. 36.
    Huo B (2005) J Biomech 38:587CrossRefGoogle Scholar
  37. 37.
    Wood JD, Wang RZ, Weiner S, Pashley DH (2003) Dent Mater 19:159CrossRefGoogle Scholar
  38. 38.
    Kishen A, Asundi A (2005) J Biomed Mater Res A 73:192Google Scholar
  39. 39.
    Kishen A, Tan KB, Asundi A (2006) J Dent 34:12CrossRefGoogle Scholar
  40. 40.
    Pedrini G, Osten W, Gusev ME (2006) Appl Opt 45:3456CrossRefGoogle Scholar
  41. 41.
    Katz DM, Blatcher S, Shelton JC (1998) Med Eng Phys 20:114CrossRefGoogle Scholar
  42. 42.
    Kozuchi J, Taniguchi M, Chubachi N, Takagi T (2002) Application of holographic interferometry measuring techniques to deformation measurement of bone due to thermal stress. IEEE instrumentation and measurement technology conference, Anchorage, AK, USAGoogle Scholar
  43. 43.
    Alexeenko W, Pedrini G, Zaslansky P, Kuzmina E, Osten W, Weiner S (2004) Digital holographic interferometry for the investigation of the elastic properties of bone. 12th international conference on experimental mechanics, Bari, ItalyGoogle Scholar
  44. 44.
    Pedrini G, Alexeenko IV, Zaslansky P, Tiziani HJ, Osten W (2005) Proc SPIE—The Int Soc Opt Eng 5776:325Google Scholar
  45. 45.
    Jones R, Wykes C (1989) Holographic and speckle interferometry. Cambridge University Press, CambridgeGoogle Scholar
  46. 46.
    Vest CM (1979) Holographic interferometry. Wiley, New YorkGoogle Scholar
  47. 47.
    Schmidt T, Tyson J, Galanulis K (2003) Exp Tech 27:47CrossRefGoogle Scholar
  48. 48.
    Zaslansky P, Currey JD, Friesem AA, Weiner S (2005) J Biomed Opt 10:024020CrossRefGoogle Scholar
  49. 49.
    Shahar R, Zaslansky P, Barak M, Friesem AA, Currey JD, Weiner S (2006) J Biomech 40:252CrossRefGoogle Scholar
  50. 50.
    Kirkpatrick SJ, Brooks BW (1998) J Biomed Mater Res 39:373CrossRefGoogle Scholar
  51. 51.
    Rodriguez D, Moreno V, Gallas M, Abeleira MT, Suarez D (2004) Med Eng Phys 26:371CrossRefGoogle Scholar
  52. 52.
    Samala PR, Su M, Liu S, Jiang HH, Yokota H, Yang LX (2005) Strain measurement of a mouse bone by 3D-electronic speckle pattern interferometry (3d_ESPI). SPIE, Bellingham, WAGoogle Scholar
  53. 53.
    Su M, Samala PR, Jiang HH, Liu S, Yang L (2005) J Hologr Speckle 2:34Google Scholar
  54. 54.
    Mohr M, Simon U, Claes L, Nbottlang M (2006) Full-field strain acquisition on ovine fracture callus with electronic speckle pattern interferometry. 5th world congress of biomechanics, Munich, GermanyGoogle Scholar
  55. 55.
    Schmidt T, Tyson J, Galanulis K (2003) Exp Tech 27:22CrossRefGoogle Scholar
  56. 56.
    Zhang D, Arola DD (2004) J Biomed Opt 9:691CrossRefGoogle Scholar
  57. 57.
    Nicolella DP, Nicholls AE, Lankford J, Davy DT (2001) J Biomech 34:135CrossRefGoogle Scholar
  58. 58.
    Nicolella DP, Lankford J (2002) J Musculoskelet Neuronal Interact 2:261Google Scholar
  59. 59.
    Nicolella DP, Bonewald LF, Moravits DE, Lankford J (2005) Eur J Morphol 42:23CrossRefGoogle Scholar
  60. 60.
    Nicolella DP, Moravits DE, Gale AM, Bonewald LF, Lankford J (2006) J Biomech 39:1735CrossRefGoogle Scholar
  61. 61.
    Koca OL, Eskitascioglu G, Usumez A (2005) J Prosthet Dent 93:38CrossRefGoogle Scholar
  62. 62.
    Kuijs RH, Fennis WMM, Kreulen CM, Barink M, Verdonschot N (2003) J Dent Res 82:967Google Scholar
  63. 63.
    Simon U, Augat P, Ignatius A, Claes L (2003) J Biomech 36:1079CrossRefGoogle Scholar
  64. 64.
    Jaecques SVN, Van Oosterwyck H, Muraru L, Van Cleynenbreugel T, De Smet E, Wevers M, Naert I, Van der Sloten J (2004) Biomaterials 25:1683CrossRefGoogle Scholar
  65. 65.
    Taylor WR, Roland E, Ploeg H, Hertig D, Klabunde R, Warner MD, Hobatho MC, Rakotomanana L, Clift SE (2002) J Biomech 35:767CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Koret School of Veterinary MedicineThe Hebrew University of JerusalemRehovotIsrael
  2. 2.Department of Structural BiologyWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations