Journal of Materials Science

, Volume 42, Issue 18, pp 7673–7677 | Cite as

Misorientation behavior of an aluminum bicrystal with 15.7° symmetric tilt boundary using simple shear

  • Jui-Chao KuoEmail author
  • Delphic Chen
  • Shih-Heng Tung
  • Ming-Hsiang Shih


The misorientation behavior was investigated in the region of a symmetrical tilt \( {\hbox{ $ < $112$ > $ }} \) boundary with a misorientation of 15.7°. The strain and orientation distributions were obtained by DIC (digital-image-correlation) and EBSD (electron backscattering diffraction) techniques to characterize the kinematical behavior of the grain boundary. In order to obtain a misorientation gradient, the misorientation was used in representation of the axis–angle description. This formation of the orientation gradient is found to have a common rotation axis in the [11−2] direction.


Shear Strain Slip System Shear Direction Tilt Boundary Reference Orientation 



The authors thank Prof. D. Raabe (MPI Germany) for supplying OIM analysis measurement, Dr. M. Winning (MPI Germany) for providing the bicrystal specimen. J.C. Kuo is grateful for Dr. S. Zaefferer (MPI Germany) for enlightening discussions. This work was funded by the program of National Science Council under project number NSC 94-2216-E-006-031.


  1. 1.
    Sutton A, Balluffi R (1999) Interface in crystalline materials. Clarendon Press, Cambridge, UK, p 704Google Scholar
  2. 2.
    Livingston JD, Chalmers B (1957) Acta Metall 5:322CrossRefGoogle Scholar
  3. 3.
    Hook RE, Hirth JP (1967) Acta Metall 15:535CrossRefGoogle Scholar
  4. 4.
    Hook RE, Hirth JP 1967) Acta Metall 15:1099CrossRefGoogle Scholar
  5. 5.
    Rey C, Zaoui A (1980) Acta Metall 28:687CrossRefGoogle Scholar
  6. 6.
    Rey C, Zaoui A (1982) Acta Metall 30:523CrossRefGoogle Scholar
  7. 7.
    Sun S, Adams BL, King W (2000) Phil Mag A80:9CrossRefGoogle Scholar
  8. 8.
    P Van Houtte, Delannay L, Samajdar I (1999) Textures Microstruct 31:109CrossRefGoogle Scholar
  9. 9.
    P Van Houtte, Li S, Engler O (2004) Aluminium 80:702Google Scholar
  10. 10.
    P Van Houtte, Li S, Seefeldt M, Delannay L (2005) Int J Plasticity 21:589CrossRefGoogle Scholar
  11. 11.
    Taylor GI (1938) J Inst Metals 62:307Google Scholar
  12. 12.
    Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2004) Nat Mater 3:43CrossRefGoogle Scholar
  13. 13.
    H Van Swygenhoven, Derlet PM, Froseth AG (2004) Nat Mater 3:399CrossRefGoogle Scholar
  14. 14.
    Bay B, Hughes N, Hansen D (1992) Acta Metall Mater 40:205CrossRefGoogle Scholar
  15. 15.
    Zaefferer S, Kuo JC, Zhao Z, Winning M, Raabe D (2003) Acta Mater 51:4719CrossRefGoogle Scholar
  16. 16.
    Livingston JD, Chalmers B (1957) Acta Metall 5:322CrossRefGoogle Scholar
  17. 17.
    Lee TC, Robertson IM, Birnbaum HK (1990) Metall Trans 21A:2437CrossRefGoogle Scholar
  18. 18.
    Chen D, Kuo JC, Tung SH, Shih MH (2007) Mater Sci Eng A (in press)Google Scholar
  19. 19.
    Clark WAT, Wagoner RH, Shen ZY, Lee TC, Robertson IM, Birnbaum HK (1992) Scripta Metall 26:203CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jui-Chao Kuo
    • 1
    Email author
  • Delphic Chen
    • 1
  • Shih-Heng Tung
    • 2
  • Ming-Hsiang Shih
    • 3
  1. 1.Department of Materials Science and EngineeringNational Cheng Kung UniversityTainanTaiwan
  2. 2.Department of Civil and Environment EngineeringNational University of KaohsiungKaohsiungTaiwan
  3. 3.Department of Construction EngineeringNational Kaohsiung First University of Science and EngineeringKaohsiungTaiwan

Personalised recommendations