A novel method for massive fabrication of β-SiC nanowires
- 244 Downloads
- 16 Citations
Abstract
Silicon carbide nanowires (NWs), that were over 200 μm in length and 20–200 nm in diameter, were prepared by high-pressure reaction from SiBONC powder tablets. Annealing temperatures between 1,500 °C and 1,600 °C and Si/B molar ratios between 70:30 and 60:40 were suitable for the growth of the nanowires. The nanowires were fabricated by in situ chemical vapor growth process on the tablets. The SiC nanowires were identified as single crystal β-SiC. The analysis of X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed the single crystalline nature of nanowires with a growth direction of <111>. Massive growth of single crystalline SiC nanowires is important to meet the requirements of the fabrication of SiC nanowire-based nanodevices.
Keywords
Select Area Electronic Diffraction Pattern Zinc Blend Powder Tablet Graphite Cylinder Boron TrichlorideNotes
Acknowledgements
The authors would like to thank the financial support from the National Natural Science Foundation of China, No. 50472011.
References
- 1.Wong WW, Sheenhan PE, Lieber CM (1997) Science 277:1971CrossRefGoogle Scholar
- 2.Tang CC, Bando Y, Sato T, Kurashima K (2002) Appl Phys Lett 80:4641CrossRefGoogle Scholar
- 3.Han WQ, Fan SS, Li QQ, Hu YD (1997) Science 277:1287CrossRefGoogle Scholar
- 4.Dai HJ, Wong EW, Lu YZ, Fan SS, Lieber CM (1995) Nature 375:769CrossRefGoogle Scholar
- 5.Zhang YF, Tang H, Wang N, Yu DP, Lee CS, Bello I, Lee ST (1998) Appl Phys Lett 72:1835CrossRefGoogle Scholar
- 6.Zhou XT, Wang N, Lai HL, Peng HY, Bello I, Wong NB, Lee CS, Lee ST (1999) Appl Phys Lett 74:3942CrossRefGoogle Scholar
- 7.Salama IA, Quick NR, Kar A (2003) J Appl Phys 93:9275CrossRefGoogle Scholar
- 8.Bazhenov AV, Brantov SK, Kolchin AA, Kuznetzov NN, Zverev VN (2004) Comp Sci Tech 64:1203CrossRefGoogle Scholar
- 9.Huang M, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2002) Science 292:1897CrossRefGoogle Scholar
- 10.Zhong Z, Qian F, Wang D, Lieber CM (2003) Nano Lett 3:343CrossRefGoogle Scholar
- 11.Tu LW, Hsiao TW, Lo I, Hsieh KY (2003) Appl Phys Lett 82:1601CrossRefGoogle Scholar
- 12.Vyshnyakova KL, Pereselentseva LN (2004) Brit Ceram Trans 5:193CrossRefGoogle Scholar
- 13.Givargizov EI (1979) In: Chernov AA (ed) Growth of crystals, vol 11, Translated by J.E.S. Bradley. Consultants Bureau, New York, p 136Google Scholar
- 14.Seeger T, Kohler-Redlich P, Ruhle M (2000) Adv Mater 12:279CrossRefGoogle Scholar
- 15.Deng SZ, Wu ZS, Zhou J, Xu NS, Chen J, Chen J (2002) Chem Phys Lett 356:511CrossRefGoogle Scholar
- 16.McMahon G, Carpenter GJC, Malis TF (1991) J Mater Sci 26:5655, DOI: 10.1007/BF02403970CrossRefGoogle Scholar
- 17.Pirouz P, Yang J (1993) Ultramicroscopy 51:189CrossRefGoogle Scholar
- 18.Wang L, Wada H, Allard LF (1992) J Mater Res 7:148CrossRefGoogle Scholar
- 19.Inagaki M, Kaneko K (2004) Carbon 42:1401CrossRefGoogle Scholar
- 20.Honda S-I, Baek Y-G (2003) Appl Surf Sci 212:378CrossRefGoogle Scholar
- 21.Liu JW, Zhong DY, Xie FQ, Sun M, Wang EG, Liu WX (2001) Chem Phy Lett 348:357CrossRefGoogle Scholar
- 22.Vix-Guterl C, Alix I, Ehrburger P (2004) Acta Mater 52:1639CrossRefGoogle Scholar
- 23.Zheng XJ, Rapp RA (1998) Mater Sci Eng 255:75CrossRefGoogle Scholar
- 24.Nhut J, Vieira R, Pesant L (2002) Catal Today 76:11CrossRefGoogle Scholar
- 25.Havela M, Colombana Ph (2004) Compo B 35:139CrossRefGoogle Scholar
- 26.Bunsell AR, Berger MH (2000) J Euro Ceram Soc 20:2249CrossRefGoogle Scholar
- 27.Zhu YQ, Kroto HW, Walton RM, Lange H, Huczko A (2002) Chem Phy Lett 365:457CrossRefGoogle Scholar