Journal of Materials Science

, Volume 42, Issue 18, pp 7721–7728 | Cite as

Silicide–carbide composites obtained from alloyed melt infiltration

  • Mohammad EsfehanianEmail author
  • Juergen G. Heinrich
  • Juergen Horvath
  • Dietmar Koch
  • Georg Grathwohl


The development of a Cf/(Mo, Ti)Si2–SiC composite using melt infiltration technique was investigated. C/C preforms and also Cf-felts were infiltrated with an alloyed melt of Si, Ti and MoSi2. The amount of each element was selected so that the melting point of the alloy was lower than 1600 °C. It was then possible to prevent the melt from reacting heavily with the carbon fibers and preserve their reinforcing effect in case of the C/C preforms. After infiltration no residual silicon could be detected in the matrix of the infiltrated C/C composites. The infiltrated C/C samples reached a maximum bending strength of 210 MPa at room temperature. At 1600 °C there is even an increase in their bending strength to 250 MPa. Infiltrated felts showed monolithic and brittle characteristics. Their bending strength at room temperature was not higher than 150 MPa. Because of softening of the residual silicon, the strength of the infiltrated felts was reduced at high temperatures. The felt samples which were infiltrated with an alloyed melt showed higher mechanical strength than pure silicon infiltrated felts both at room temperature and at 1600 °C.


Carbon Fiber Interior Part Pure Silicon Free Silicon Load Point Displacement 



The authors would like to thank the AiF (Germany) for their supports to the project 13411N.


  1. 1.
    Hozer L, Lee JR, Chiang YM (1995) Mater Sci Eng A195:131CrossRefGoogle Scholar
  2. 2.
    Fitzer E, Gadow R (1986) Am Ceram Soc Bull 65(2):325Google Scholar
  3. 3.
    Larsen DC, Adams J, Johnson J, Teotia A, Hill L (1985) Ceramic materials for advanced heat engines: technical and economic evaluation. Noyes Publications, Park Ridge, New JerseyGoogle Scholar
  4. 4.
    Hering E, Martin R, Stohrer M (1989) Physics for engineers. VDI-Verlag, Düsseldorf, p 171 (in German)Google Scholar
  5. 5.
    Chiang YM, Messner RP, Terwilliger CD, Behrendt DR (1991) Mater Sci Eng A144:63CrossRefGoogle Scholar
  6. 6.
    Singh M, Behrendt DR (1994) Mater Sci Eng A187:183CrossRefGoogle Scholar
  7. 7.
    Zhu Q, Shobu K (2000) J Mater Sci Lett 19:153CrossRefGoogle Scholar
  8. 8.
    Singh M, Dickerson RM (1996) J Mater Res 11(3):746CrossRefGoogle Scholar
  9. 9.
    Tien JK (1989) In: Tien JK, Caufield T (eds) Superalloys, supercomposites and superceramics. Academic Press, BostonGoogle Scholar
  10. 10.
    Gadow R, Fitzer E (1987) Am Ceram Soc Bull 2(65):339Google Scholar
  11. 11.
    Forrest CW, Kennedy P, Shennan JV (1972) In: Popper P (ed) Special ceramics 5. The British Ceramic Research Association, Stoke on Trent, 99ffGoogle Scholar
  12. 12.
    Trantina GG, Mehan RL (1977) J Am Ceram Soc 3–4(60):177CrossRefGoogle Scholar
  13. 13.
    Meier S, Heinrich JG (2002) J Euro Ceram Soc 22:2357CrossRefGoogle Scholar
  14. 14.
    Messner RP, Chiang YM (1990) J Am Ceram Soc 73:1193CrossRefGoogle Scholar
  15. 15.
    Henager CH, Brimhall JL, Hirth JP (1992) Mater Sci Eng A155:109CrossRefGoogle Scholar
  16. 16.
    Jeng YL, Laverina EJ (1994) J Mater Sci, 29:2557CrossRefGoogle Scholar
  17. 17.
    Petrovic JJ, Honnel RE (1990) J Mater Sci Lett 9:1083CrossRefGoogle Scholar
  18. 18.
    Gac FD, Petrovic JJ (1985) J Am Ceram Soc 68(8):C200CrossRefGoogle Scholar
  19. 19.
    Carter DH, Hurley GF (1987) J Am Ceram Soc 70(4):C79CrossRefGoogle Scholar
  20. 20.
    Cook J, Khan A, Lee EW, Mahapatra R (1992) Mater Sci Eng A155:183CrossRefGoogle Scholar
  21. 21.
    Lim CB, Yano Y, Iseki T (1989) J Mater Sci 24:4144CrossRefGoogle Scholar
  22. 22.
    Bhatt RT, Hebsur MG (2000) Ceram Eng Sci Proc (USA) 21(3):315CrossRefGoogle Scholar
  23. 23.
    Goller R (1996) Effect of siliconizing on the mechanical properties of a three dimensionally fiber reinforced carbon composite (3d-C/C) considering different fiber-coating systems. Ph.D. Thesis, Clausthal University of Technology (in German)Google Scholar
  24. 24.
    Heidenrich B (2003) In: Krenkel W (ed) Ceramic composites. WILEY-VCH, Weinheim, p 48 (in German)Google Scholar
  25. 25.
    Nowotny H, Kieffer R, Schachner H (1952) Monatsh Chem 83:1243CrossRefGoogle Scholar
  26. 26.
    Watchman JB (1996) Mechanical properties of ceramics. Whiley-Interscience, New YorkGoogle Scholar
  27. 27.
    Thomas CR (1993) In: Thomas CR (ed) Essentials of carbon–carbon composites. The Royal Society of Chemistry, Cambridge, p 1Google Scholar
  28. 28.
    McEnaney B, Mays T (1993) In: Thomas CR (ed) Essentials of carbon–carbon composites. The Royal Society of Chemistry, Cambridge, p 142Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mohammad Esfehanian
    • 1
    Email author
  • Juergen G. Heinrich
    • 1
  • Juergen Horvath
    • 2
  • Dietmar Koch
    • 2
  • Georg Grathwohl
    • 2
  1. 1.Institute for Non-Metallic MaterialsClausthal University of TechnologyClausthal-ZellerfeldGermany
  2. 2.Ceramic Materials and ComponentsUniversity of BremenBremenGermany

Personalised recommendations