Advertisement

Journal of Materials Science

, Volume 42, Issue 18, pp 7861–7865 | Cite as

Effect of carbon black concentration on electrical conductivity of epoxy resin–carbon black–silica nanocomposites

  • Wei Zhang
  • Richard Simon BlackburnEmail author
  • Abbas A. Dehghani-Sanij
Article

Abstract

This work presents an insight into the conductivity-carbon black (CB) concentration relationship of nanocomposites. High conductivity is observed above 14% CB loading (% on mass of epoxy resin), indicating the generation of conductive networks throughout the nanocomposites. Observation of the relationship between the natural logarithm of conductivity values versus CB loading shows a remarkable increase in conductivity when the CB loading increases from 19 to 24%. In this region (percolation) a relatively small increase in CB loading produces a large increase in conductivity. When the quantity of CB is low (<14%), the resistivity of the nanocomposite is only slightly different from that of the base polymer; further increase in CB loading beyond the critical concentration region (>24%) causes marginal change in conductivity. The uniformity of the nanocomposites is evidenced by both microstructure (Si-mapping) and macro-property (resistance versus distance relationship) analyses.

Keywords

Percolation Threshold Epoxy Resin Polymer Conductive Network Volume Resistivity Carbon Black Concentration 

Notes

Acknowledgements

The authors would like to thank The UK Government (Overseas Research Scholarship Awards Scheme) and The University of Leeds (Tetley and Lupton Scholarships) for the provision of a PhD scholarship to one of us (Wei Zhang).

References

  1. 1.
    Buxbaum G, Pfaff G (eds) (2005) Industrial inorganic pigments, 3rd edn. Wiley-VCH, Weinheim, p 163Google Scholar
  2. 2.
    Fukahori Y (2005) J Appl Polym Sci 95(1):60CrossRefGoogle Scholar
  3. 3.
    Wang M-J, Wolff S, Tan E-H (1993) Rubber Chem Technol 66(2):178CrossRefGoogle Scholar
  4. 4.
    Copuroglu M, Sen M (2005) Polym Adv Technol 16(1):61CrossRefGoogle Scholar
  5. 5.
    Yamaguchi K, Sasaki L, Meiarashi S (2004) J Japan Petroleum Instit 47(4):266CrossRefGoogle Scholar
  6. 6.
    Liu M, Horrocks AR (2002) Polym Deg Stab 75(3):485CrossRefGoogle Scholar
  7. 7.
    Horrocks AR, Mwila J, Miraftab M (1999) Polym Deg Stab 65(1):25CrossRefGoogle Scholar
  8. 8.
    Aoki Y, Watanabe H (2004) Rheol Acta 43:390CrossRefGoogle Scholar
  9. 9.
    Aoki Y, Hatano A, Watanabe H (2003) Rheol Acta 42:321CrossRefGoogle Scholar
  10. 10.
    Aoki Y, Hatano A, Watanabe H (2003) Rheol Acta 42:209CrossRefGoogle Scholar
  11. 11.
    Choi S-S, Nah C, Lee SG, Joo CW (2003) Polym Int 52(1):23CrossRefGoogle Scholar
  12. 12.
    Buxbaum G (ed) (1998) Industrial inorganic pigments, 2nd edn. Wiley-VCH, Weinheim, Chichester, p 166Google Scholar
  13. 13.
    Manickam M, Takata M (2002) J Power Sources 112(1):116CrossRefGoogle Scholar
  14. 14.
    Biegler C, Deutscher RL, Fletcher S, Hua S, Woods R (1983) J Electrochem Soc 130(12):2303CrossRefGoogle Scholar
  15. 15.
    Xiao AY, Tong QK, Savoca AC, van Oosten H (2001) IEEE Trans Component Pack Technol 24(3):445CrossRefGoogle Scholar
  16. 16.
    Fujitani T, Matsuoka K (1981) Pressure-sensitive electric conductive sheet material. USP 4,258,100, Mar 24, 1981Google Scholar
  17. 17.
    De SK, White JR (eds) (1996) Short fibre-polymer composites. Woodhead, Cambridge, p 182Google Scholar
  18. 18.
    Norman RH (1970) Conductive rubbers and plastics: their production, application and test methods. Elsevier Pub. Co, Amsterdam, New York, p 224Google Scholar
  19. 19.
    Flandin L, Brechet Y, Cavaille JY (2001) Composites Sci Technol 61:895CrossRefGoogle Scholar
  20. 20.
    Wang X, Chung DDL (1998) Sensors Actuators A 71:208CrossRefGoogle Scholar
  21. 21.
    Miyasaka K, Watanabe K, Jojima E, Aida H, Sumita M, Ishikawa K (1982) J Mater Sci 17(6):1610, DIO: 10.1007/BF00540785CrossRefGoogle Scholar
  22. 22.
    Feller JF, Linossier I, Levesque G (2002) Polym Adv Technol 13:714CrossRefGoogle Scholar
  23. 23.
    Zhang W, Blackburn R, Dehghani A (2007) Mat Sci Forum 546–549:1525Google Scholar
  24. 24.
    Zhang W, Blackburn RS, Dehghani-Sanij AA (2007) Scripta Mater 56:581CrossRefGoogle Scholar
  25. 25.
    Zhang MQ, Xu JR, Zeng HM, Huo Q, Zhang ZY, Yun FC, Friedrich K (1995) J Mater Sci 30(17):4226, DIO: 10.1007/BF00361501CrossRefGoogle Scholar
  26. 26.
    Zhang MQ, Yu G (1998) Macromolecules 31:6724CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Wei Zhang
    • 1
    • 2
  • Richard Simon Blackburn
    • 1
    Email author
  • Abbas A. Dehghani-Sanij
    • 2
  1. 1.Green Chemistry Group, Centre for Technical TextilesUniversity of LeedsLeedsUK
  2. 2.School of Mechanical EngineeringUniversity of LeedsLeedsUK

Personalised recommendations