Journal of Materials Science

, Volume 42, Issue 18, pp 7647–7656 | Cite as

Laser melting functionally graded composition of Waspaloy® and Zirconia powders

  • Kamran Aamir Mumtaz
  • Neil Hopkinson


An approach for fabricating functionally graded specimens of supernickel alloy and ceramic compositions via Selective Laser Melting (SLM) is presented. The focus aimed at using the functionally graded material (FGM) concept to gradually grade powdered compositions of Zirconia within a base material of Waspaloy®. A high power Nd:YAG laser was used to process the material compositions to a high density with gradual but discrete changes between layered compositions. The graded specimens initially consisted of 100% Waspaloy® with subsequent layers containing increased volume compositions of Zirconia (0–10%). Specimens were examined for porosity and microstructure. It was found that specimens contained an average porosity of 0.34% with a gradual change between layers without any major interface defects.


Heat Affect Zone Bond Coat Functionally Grade Material Selective Laser Melting Selective Laser Sinter 


  1. 1.
    Gu Y, Nakamura T, Prchlik L, Sampath S, Wallace J (2003) Mater Sci Eng A 345(1–2):223CrossRefGoogle Scholar
  2. 2.
    Aboudia J, Pinderab MJ, Arnold SM (1999) Composites Part B 30:777CrossRefGoogle Scholar
  3. 3.
    Polat A, Sarikaya O, Celik E (2002) Mater Des 23:641CrossRefGoogle Scholar
  4. 4.
    Movchan BA, Yu K (2004) Surf Coat Technol 188–189:85CrossRefGoogle Scholar
  5. 5.
    Quadakkers WJ, Shemet V, Sebold D, Anton R, Wessel E, Singheiser L (2005) Surf Coat Technol 199(1):77CrossRefGoogle Scholar
  6. 6.
    Miller RA, Lowell CE (1982) Thin Solid Films 95(3):265CrossRefGoogle Scholar
  7. 7.
    Miller RA, Berndt CC (1984) Thin Solid Films 119(2):195CrossRefGoogle Scholar
  8. 8.
    Gill SC, Clyne TW (1990) Metall Trans 21B:377CrossRefGoogle Scholar
  9. 9.
    Ferrari M, Lutterotti L (1992) J Eng Mech 118(9):1928CrossRefGoogle Scholar
  10. 10.
    Singheiser L, Steinbrech L, Quadakkers WJ, Herzog R (2001) Mater High Temp 18(4):249CrossRefGoogle Scholar
  11. 11.
    Nomura N, Gasik M, Kawasaki A, Watanabe R (2000) Ceram Trans 114:233Google Scholar
  12. 12.
    Limarga AM, Widjaja S, Yip LK (2002) Int J Mod Phys B 16:233CrossRefGoogle Scholar
  13. 13.
    Choules BD, Kolini K (1996) J Eng Mater Technol Trans ASME 118(4):522CrossRefGoogle Scholar
  14. 14.
    Sasaki M, Hirirai T (1991) Cent Mem Iss Ceram Soc Jpn 99:1002CrossRefGoogle Scholar
  15. 15.
    Watanabe R, Takahashi H, Tamura M, Shiota I, Yoshida T, Kurino T (1993) Functionally gradient materials. FGM Forum Japan, p 1–10Google Scholar
  16. 16.
    Khor KA, Dong ZL, Gu YW (1999) Mater Lett 38:437CrossRefGoogle Scholar
  17. 17.
    Dong ZL, Khor KA, Gu YW (1999) Surf Coat Technol V 113:181CrossRefGoogle Scholar
  18. 18.
    Jung YH, Choi SC (1997) J Mater Sci 32:3841, DOI: 10.1023/A: 1018640126751Google Scholar
  19. 19.
    Demirkiran AS, Elik E, Avci E (2001) Proc Fifth Int Fract Conf 10:1341Google Scholar
  20. 20.
    Demirkiran AS, Avci E (1999) Surf Coat Technol 116–119:292CrossRefGoogle Scholar
  21. 21.
    Demirkiran AS, Elik E, Avci E (1997) Oxidation of functionally gradient materials. Proceedings of the Fifth Combustion Symposium, Bursa (Turkey), July 21–23, p 543Google Scholar
  22. 22.
    Kawasaki A, Watanabe R, Yuki M, Nakanishi Y, Onabe H (1996) Mater Trans JIM 37(4):788CrossRefGoogle Scholar
  23. 23.
    Khor KA, Gu YW (2000) Thin Solid Films 372:104CrossRefGoogle Scholar
  24. 24.
    Kokini K, Dejonge J, Rangaraj SV, Beardesly BM (2002) Surf Coat Technol 154:223CrossRefGoogle Scholar
  25. 25.
    Yonushonis T (1995) NASA Conf Publ 3312:235Google Scholar
  26. 26.
    Gasik M, Kawasaki A, Kang YS (2005) Mater Sci Forum 492–49:9CrossRefGoogle Scholar
  27. 27.
    Wohlers T (2003) Wohlers Report 2003 Rapid prototyping and tooling state of the industry. Annual Worldwide Progress ReportGoogle Scholar
  28. 28.
    Cherradi N, Kawasaki A, Gasik M (1999) Comp Eng 4:883CrossRefGoogle Scholar
  29. 29.
    Domack MS, Baughman JM (2005) Rapid Prototyping J 1(11):41CrossRefGoogle Scholar
  30. 30.
    Liu W, Dupont JN (2003) Scripta Mater 9(48):1337CrossRefGoogle Scholar
  31. 31.
    Jepson L, Beaman JJ, Bourell DL, Wood KL, (1997) SLS processing of functionally graded materials. SFF Symposium Proceedings, p 67Google Scholar
  32. 32.
    Kruth P, Froyen L, Vaerenbergh JV, Mercelis P, Rombouts M, Lauwers B (2004) J Mater Process Technol 149(1–3):616CrossRefGoogle Scholar
  33. 33.
    Su WN (2002) Layered fabrication of tool steel and functionally graded material with a Nd:YAG pulsed laser. PhD Thesis, Loughborough UniversityGoogle Scholar
  34. 34.
    Beal VE, Erasenthiran P, Hopkinson N, Dickens P, Ahrens CH (2006) Int J Adv Manuf Technol 30:844CrossRefGoogle Scholar
  35. 35.
    Mumtaz K, Hopkinson N, Erasenthiran P (2006) High density selective laser melting of Waspaloy®. SFF Symposium Proceedings, p 220Google Scholar
  36. 36.
    Special Metals, “Waspaloy”,, as on 1st August 2006Google Scholar
  37. 37.
    Mel chemical, “Zirconia”,, as on 1st August 2006Google Scholar
  38. 38.
    Morgan RH, Papworth AJ, Sutcliffe C, Fox P, O’neill W (2002) J Mater Sci 37:3093, DOI: 10.1023/A: 1016185606642Google Scholar
  39. 39.
    Uthsca, The University of Texas Health Science Center at San Antonio, ImageTool Version 3.0Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Rapid Manufacturing Research Group, School of Mechanical and Manufacturing EngineeringLoughborough UniversityLoughboroughUK

Personalised recommendations