Journal of Materials Science

, Volume 42, Issue 21, pp 8957–8965 | Cite as

The micro-structural strain response of tendon

  • Vinton W. T. Cheng
  • Hazel R. C. Screen
Nano- and micromechanical properties of hierarchical biological materials


Tendons are multi-level fibre-reinforced composites, designed to transmit muscle forces to the skeleton. During physiological loading, tendons experience tensile loads, which are transmitted through the structure to the cells, where they may initiate mechanotransduction pathways. The current study examines the structural reorganisation and resulting local strain fields within the tendon matrix under tensile load. It uses confocal microscopy to photobleached a grid onto the collagen and image its deformation under the application of incremental tensile strain. Six parameters are used to quantify fibril and fibre movement and examine the mechanisms of extension employed by fascicles.

Results demonstrated an inhomogeneous strain response throughout the matrix and large variability between samples. Local strains in the loading axis were significantly smaller than the applied values. However, large compressive strains, perpendicular to the loading axis, were recorded. The average Poisson’s ratio (0.8) suggested cells may experience significant compression during loading. Deflection of the grid lines, indicating sliding between collagen fibres, and rotation of the grid were also recorded. These data highlight the non-homogenous strain environment of fascicles and provide further evidence for fibre sliding under tensile load. They also suggested a rotary component to tendon response, which may indicate a helical organisation to the tendon matrix.


Fibril Collagen Fibril Acridine Orange Strain Increment Applied Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Many thanks to Dr. Martin Knight, for his expert advice and assistance with the confocal microscopy.


  1. 1.
    Woo SLY (1982) Biorheology 19:385Google Scholar
  2. 2.
    Harris B (1980) Symp Soc Exp Biol 34:37Google Scholar
  3. 3.
    Hiltner A, Cassidy JJ, Baer E (1985) Ann Rev Mater Sci 15:455CrossRefGoogle Scholar
  4. 4.
    Benjamin M, Ralphs JR (1997) Histol Histopathol 12:1135Google Scholar
  5. 5.
    Ker RF (2002) CBPA 133:987Google Scholar
  6. 6.
    Elliott DM, Robinson PS, Gimbel JA, Sarver JJ, Abboud JA, Iozzo RV, Soslowsky LJ (2003) Ann Biomed Eng 31:599CrossRefGoogle Scholar
  7. 7.
    Wess TJ, Hammersley AP, Wess L, Miller A (1998) J Struct Biol 122:92CrossRefGoogle Scholar
  8. 8.
    Buehler MJ (2006) PNAS 103(33):12285CrossRefGoogle Scholar
  9. 9.
    Avery NC, Bailey AJ (2005) Scan J Med Sci Sports 15:231CrossRefGoogle Scholar
  10. 10.
    Wess TJ, Cairns DE (2005) J Synchrotron Rad 12:751CrossRefGoogle Scholar
  11. 11.
    Provenzano PP, Vanderby R Jr (2006) Matrix Biol 25:2–71CrossRefGoogle Scholar
  12. 12.
    Derwin KA, Soslowsky LJ, Kimura JH, Plaas AH (2001) J Orthop Res 19:269CrossRefGoogle Scholar
  13. 13.
    Redaelli A, Vesentini S, Soncini M, Vena P, Mantero S, Montevecchi FM (2003) J Biomech 36:1555CrossRefGoogle Scholar
  14. 14.
    Screen HR, Lee DA, Bader DL, Shelton JC (2004) J Eng Med 218:109Google Scholar
  15. 15.
    Scott JE, Orford R (1981) Biochem J 197:573Google Scholar
  16. 16.
    Scott JE (2003) J Physiol 55:2–335Google Scholar
  17. 17.
    Weber IT, Harrison RW, Iozzo RV (1996) J Biol Chem 271:31767CrossRefGoogle Scholar
  18. 18.
    Vesentini S, Redaelli A, Montevecchi FM (2005) J Biomech 38:433CrossRefGoogle Scholar
  19. 19.
    Sasaki N, Odajima S (1996) J. Biomech 29(5):655CrossRefGoogle Scholar
  20. 20.
    Puxkandl R, Zizak I, Paris O, Keckes J, Tesch W, Bernstorff S, Purslow P, Fratzl P (2002) Philos Trans R Soc Lond B Biol Sci 357:191CrossRefGoogle Scholar
  21. 21.
    Bruehlmann SB, Matyas JR, Duncan NA (2004) Spine 29:2612CrossRefGoogle Scholar
  22. 22.
    Screen HR, Shelton JC, Chhaya VH, Kayser MV, Bader DL, Lee DA (2005) Ann Biomed Eng 33(8):1090CrossRefGoogle Scholar
  23. 23.
    Bruehlmann SB, Kelly EJ, Duncan NA (2005) Trans Orthop Res Soc 30:389Google Scholar
  24. 24.
    Goodwin JS, Kenworthy AK (2005) Methods 37:154CrossRefGoogle Scholar
  25. 25.
    Koster M, Frahm T, Hauser H (2005) Curr Opin Biotech 16:28CrossRefGoogle Scholar
  26. 26.
    Woo HM, Kim MS, Kweon OK, Kim DY, Nam TC, Kim JH (2001) Br J Ophthalmol 85:345CrossRefGoogle Scholar
  27. 27.
    Davison PF, Galbavy EJ (1985) Invest Ophthalmol Vis Sci 26:1202Google Scholar
  28. 28.
    Arnoczky SP, Lavagnino M, Whallon JH, Hoonjan A (2002) J Orthop Res 20:29CrossRefGoogle Scholar
  29. 29.
    Petrán M, Boyde A, Hadravsky M (1990) In: Confocal microscopy. Academic Press, London, vol 9, p 262Google Scholar
  30. 30.
    Hansen KA, Weiss JA, Barton JK (2002) J Biomech Eng 124:72CrossRefGoogle Scholar
  31. 31.
    Lanir Y, Salant EL, Foux A (1988) Biorheology 25:591Google Scholar
  32. 32.
    Hannafin JA, Arnoczky SP (1994) J Orthop Res 12:350CrossRefGoogle Scholar
  33. 33.
    Knight MM, van de Breevaart Bravenboor J, Lee DA, van Osch GJVM, Weinans H, Bader DL (2002) Biochim Biophys Acta 1570:1Google Scholar
  34. 34.
    Wang YN, Galiotis C, Bader DL (2000) J Biomech 33:483CrossRefGoogle Scholar
  35. 35.
    Yahia LH, Drouin G (1989) J Orthop Res 7:2–243CrossRefGoogle Scholar
  36. 36.
    de Campos Vidal B (2003) Micron 34:423CrossRefGoogle Scholar
  37. 37.
    Kannus P (2000) Scand J Med Sci Sports 10:312CrossRefGoogle Scholar
  38. 38.
    Ottani V, Martini D, Franchi M, Ruggeri A, Raspanti M (2002) Micron 33:587CrossRefGoogle Scholar
  39. 39.
    Wess TJ, Hammersley AP, Wess L, Miller A (1998) J Mol Biol 275:255CrossRefGoogle Scholar
  40. 40.
    de Campos Vidal B (2006) Matrix Biol 25:132CrossRefGoogle Scholar
  41. 41.
    Raspanti M, Manelli A, Franchi M, Ruggeri A (2005) Matrix Biol 24:503CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Medical Engineering Division, Department of Engineering, Queen MaryUniversity of LondonLondonUK
  2. 2.IRC in Biomedical Materials, Department of Engineering, Queen MaryUniversity of LondonLondonUK

Personalised recommendations