Advertisement

Journal of Materials Science

, Volume 42, Issue 18, pp 7787–7793 | Cite as

Effect of liquid phase on densification in electric-discharge compaction

  • Xiyong Wu
  • Jingdong Guo
Article

Abstract

The effect of liquid phase on densification in electric-discharge compaction (EDC) was explored in the present work. The temperature at contact area of particles in EDC was estimated from random packing model incorporated with electric current distributions. Consolidation of cemented carbide and tungsten heavy alloys was conducted under varying current densities. WC-11Co/Fe/WC-11Co sandwich powder compacts were designed to investigate the effect of liquid phase flow. It is found that the densification occurred only when liquid phase formed, and relative density increased with the increasing of liquid phase volume. In the case of WC-11Co powders, the faceted grain evolution occurred but the significant grain growth was hardly observed, which meant the densification was mainly induced by particle rearrangement. The depth of liquid penetration of Fe in WC-11Co/Fe/WC-11Co sandwich compact also agreed with that caused by particle rearrangement processing. The possible effects of electric current on densification were also discussed.

Keywords

Spark Plasma Sinter Liquid Phase Sinter Vacancy Diffusion Particle Rearrangement Tungsten Heavy Alloy 

Notes

Acknowledgements

Financial supports by the National Natural Science Foundation of China (Nos. 50371091 and 90206044) and National Major Basic Research Development Program Item of China (2002CB613503) are acknowledged. Prof. G. H. He and Dr. X. L. Wang are greatly acknowledged for their valuable help.

References

  1. 1.
    Jiang W, Yatsui K (1998) IEEE Plasma Sci 26:1498CrossRefGoogle Scholar
  2. 2.
    Calka A, Wexler D (2002) Nature 419:147CrossRefGoogle Scholar
  3. 3.
    Mishra RS, Mukherjee AK (2000) Mater Sci Eng 287A:178CrossRefGoogle Scholar
  4. 4.
    Omori M (2000) Mater Sci Eng 287A:183CrossRefGoogle Scholar
  5. 5.
    Newman DC (2000) Mater Sci Eng 287A:198CrossRefGoogle Scholar
  6. 6.
    Okazaki K (2000) Mater Sci Eng 287A:189CrossRefGoogle Scholar
  7. 7.
    Groza JR, Zavaliangos A (2003) Rev Adv Mater Sci 5:24Google Scholar
  8. 8.
    Rajagopalan PK, Desai SV, Kalghatgi RS, Krishan TS, Bose DK (2000) Mater Sci Eng 280A:289CrossRefGoogle Scholar
  9. 9.
    Feng A, Munir ZA (1995) Metall Mater Trans 26B:587CrossRefGoogle Scholar
  10. 10.
    Conrad H (2000) Mater Sci Eng 287A:205CrossRefGoogle Scholar
  11. 11.
    Taylor GF (1933) U.S. Patent No. 1896854Google Scholar
  12. 12.
    Lenel FV (1955) J Metal 7:158Google Scholar
  13. 13.
    Yanagisawa O, Kuramoto H, Matsugi K, Komatsu M (2003) Mater Sci Eng 350A:184CrossRefGoogle Scholar
  14. 14.
    Mamedov V (2002) Powder Metall 45:322CrossRefGoogle Scholar
  15. 15.
    Yavuz N, Can M (1997) J Mater Proc Manu Sci 5:197Google Scholar
  16. 16.
    Ana YB, Oha NH, Chuna YW, Kima YH, Kima DK, Parkb JS, Kwonc J-J, Choid KO, Eomd TG, Byund TH, Kime JY, Reucroftf PJ, Kimg KJ, Lee WH (2005) Mater Lett 59:2178CrossRefGoogle Scholar
  17. 17.
    Wu XY, Zhang W, Wang W, Yang F, Min JY, Wang BQ, Guo JD (2004) J Mater Res 19:2240CrossRefGoogle Scholar
  18. 18.
    Arzt E (1982) Acta Metall 30:1883CrossRefGoogle Scholar
  19. 19.
    Helle AS, Easterling KE, Ashby MF (1985) Acta Metall 33:2163CrossRefGoogle Scholar
  20. 20.
    Swinkels FB, Wilknson DS, Arzt E, Ashby M (1983) Acta Metall 31:1829CrossRefGoogle Scholar
  21. 21.
    Alp T, Al-Hassani STS, Johnson W (1985) J Eng Mater Tech 107:186CrossRefGoogle Scholar
  22. 22.
    Kim DK, Pak H, Okazaki K (1988) Mater Sci Eng 104A:191CrossRefGoogle Scholar
  23. 23.
    Sprecher AF, Mannan SL, Conrad H (1983) Scri Metall 17:769CrossRefGoogle Scholar
  24. 24.
    Shackelford JF, Alexander W (2001) Materials science and engineering handbook. CRC Press LLC, p 597Google Scholar
  25. 25.
    German RM (1996) Sintering theory and practice. John Wiley & Sons Inc., p 270Google Scholar
  26. 26.
    Liu J, German RM (2001) Metall Mater Trans 32A:3125CrossRefGoogle Scholar
  27. 27.
    Xu K, Mehrabadi MM (1997) Mech Mater 25:137CrossRefGoogle Scholar
  28. 28.
    Lavergne O, Allibert CH (1999) High Temp High Press 31:347CrossRefGoogle Scholar
  29. 29.
    Battezzati1 L, Greer AL (1989) Acta Metall 37:1791CrossRefGoogle Scholar
  30. 30.
    Fahmy Y, Conrad H (2001) Metall Mater Trans 32A:811CrossRefGoogle Scholar
  31. 31.
    Raichenko AI, Istomina TI, Popov VP, Derevyanko AV, Vishnyakov LR, Moroz VP (2003) Powder Metall Metal Ceram 42:213CrossRefGoogle Scholar
  32. 32.
    Peng H (2004) Ph.D Thesis, Stockholm UniversityGoogle Scholar
  33. 33.
    Zon BA (2001) Phys Lett 292 A:203CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations