Advertisement

Journal of Materials Science

, Volume 42, Issue 18, pp 7780–7786 | Cite as

Effect of very high temperature short exposures on the dissolution of the γ′ phase in single crystal MC2 superalloy

  • Jonathan Cormier
  • Xavier Milhet
  • Jose Mendez
Article

Abstract

Time-temperature dependence of the γ′ phase volume fraction was investigated for a second generation single crystal nickel-based superalloy exposed to very short high temperature regimes (1,100–1,200 °C). In this temperature range, the dissolution of the strengthening γ′ phase occurs. Evolution of the γ′ volume fraction in transient regimes has been established for each temperature and activation energy of the dissolution phenomenon were determined. They directly attest from the activity of the diffusing species involved during this phenomenon. From these analyses, the volume fraction at equilibrium was established for the entire temperature range where dissolution occurs. A model, based on a time/temperature equivalence, is proposed to quantify the γ′ volume fraction dissolved during short high temperature exposure.

Keywords

Cool Rate Dwell Time Apparent Activation Energy Turbine Blade Transient Regime 

Notes

Acknowledgements

The authors acknowledge financial support from la Délégation Générale de l’Armement (DGA) and TURBOMECA—groupe SAFRAN company, which is also acknowledged for providing the material. The authors would also like to thanks P. CARON (ONERA) for thermal treatments carried out until thermodynamic equilibrium. A. GLAD is gratefully acknowledged for English suggestions.

References

  1. 1.
    Erickson GL (1996) In: Kissinger RD, Deye DJ, Anton DL, Cetel AD, Nathal MV, Pollock TM, Woodford DA (TMS) (eds) Superalloys 1996. Warrendale, p 35Google Scholar
  2. 2.
    Royer A, Bastie P, Veron M, (1999) Scr Mater 40:955CrossRefGoogle Scholar
  3. 3.
    Caron P (1995) Colloque National Superalliage Monocristallin. ToulouseGoogle Scholar
  4. 4.
    Murakumo T, Kobayashi T, Koizumi Y, Harada H (2004) Acta Mater 52:3737CrossRefGoogle Scholar
  5. 5.
    Ardell AJ, Nicholson RB (1966) Acta Metallur 14:1295CrossRefGoogle Scholar
  6. 6.
    Tien JK, Copley SM (1971) Met Trans 2:215CrossRefGoogle Scholar
  7. 7.
    Svoboda J, Lukas P (1996) Acta Mater 44:2557CrossRefGoogle Scholar
  8. 8.
    Louchet F, Hazotte A (1997) Scr Mater 37:589CrossRefGoogle Scholar
  9. 9.
    Prikhodko SV, Ardell AJ (2003) Acta Mater 51:5001CrossRefGoogle Scholar
  10. 10.
    Prikhodko SV, Ardell AJ (2003) Acta Mater 51:5013CrossRefGoogle Scholar
  11. 11.
    Prikhodko SV, Ardell AJ (2003) Acta Mater 51:5021CrossRefGoogle Scholar
  12. 12.
    Pollock TM, Argon AS (1994) Acta Metallur Mater 42:1859CrossRefGoogle Scholar
  13. 13.
    Pollock TM, Field R, Murphy W (1998). In: Science ICO (ed) Modelling of microstructural evolution in creep resistant materials. Center for continuing education, London, p 193Google Scholar
  14. 14.
    Grosdidier T, Hazotte A, Simon A. (1998) Mater Sci Eng A 256:183CrossRefGoogle Scholar
  15. 15.
    Grosdidier T, Hazotte A, Simon A (1994) Scr Metallur Mater 30:1257CrossRefGoogle Scholar
  16. 16.
    Diologent F (2002) PhD thesis, Université de Paris Sud—Centre d’OrsayGoogle Scholar
  17. 17.
    Serin K, Gobenli G, Eggeler G (2004) Mater Sci Eng A 387–389:133CrossRefGoogle Scholar
  18. 18.
    Soucail M, Bienvenu Y (1996) Mater Sci Eng A 220:215CrossRefGoogle Scholar
  19. 19.
    Roebuck B, Cox D, Reed R (2001) Scr Mater 44:917CrossRefGoogle Scholar
  20. 20.
    Monajati H, Jahazi M, Bahrami M, Yue S (2004) Mater Sci Eng A 373:286CrossRefGoogle Scholar
  21. 21.
    Fournier D (1995) Colloque National Superalliage Monocristallin. ToulouseGoogle Scholar
  22. 22.
    Benyoucef M, Coujou A, Barbker B, Clement N, (1997) Mater Sci Eng A 234–236:692CrossRefGoogle Scholar
  23. 23.
    Kakehi K (1999) Metallur Mater Trans 30A:1249CrossRefGoogle Scholar
  24. 24.
    Brass AM, Roux D, Chene J (2002) Mater Sci Eng A 323:97CrossRefGoogle Scholar
  25. 25.
    Duval S, Chamberland S, Caron P, Blavette D, (1994) Acta Metallur Mater 42:185CrossRefGoogle Scholar
  26. 26.
    Weast RC (ed) (1985) Handbook of chemistry and physics, 66th edn. CRC PressGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Laboratoire de Mécanique et Physique des Matériaux, UMR CNRS 6617, ENSMAFuturoscope Chasseneuil Cedex, PoitiersFrance

Personalised recommendations