Journal of Materials Science

, Volume 42, Issue 19, pp 8279–8286 | Cite as

The electrochemical behaviour of nitrogen-containing austenitic stainless steel in methanolic solution

  • V. B. Singh
  • Monali Ray


The corrosion behaviour of nitrogen-containing austenitic stainless steel in methanol containing different concentrations of H2SO4, HCl, LiCl and H2SO4 + HCl has been investigated using a potentiostatic polarization method. The cathodic reaction in the H2SO4, HCl and H2SO4 + HCl solutions was proton reduction whereas in the neutral LiCl solution, oxygen reduction was the predominant cathodic reaction. Active, passive and transpassive behaviours were observed only for higher concentrations of H2SO4 (0.01–2.0 M) due to the inherent water content. A cathodic loop, characterized by measured negative current in the anodic region, was also observed in solutions, in which the concentration of H2SO4 was 1.0 M or higher. The relative stability of the passive films decreased as the H2SO4 concentration increased, and thus the steel suffered from mild pitting corrosion. In the chloride environment, the rate of corrosion increased as the Cl ion concentration increased. The presence of acid along with Cl ions enhanced corrosion, and the corrosion rate increased significantly. The steel suffered from mild intergranular corrosion in acidic chloride solutions of methanol. In the H2SO4 + HCl solutions, passive films were only formed when the H2SO4 to HCl concentration ratio was greater than ∼10:1.


LiCl Passive Film Corrosion Current Density H2SO4 Solution Anodic Polarization Curve 



Financial assistance for this work from Council of Scientific and Industrial Research (CSIR), New Delhi, India is gratefully acknowledged.


  1. 1.
    Vanini AS, Audouard JP, Marcus P (1994) Corros Sci 36:1825CrossRefGoogle Scholar
  2. 2.
    Flis J, Kuczynska M (2004) J Electrochem Soc 151:B573CrossRefGoogle Scholar
  3. 3.
    Leckie HP, Uhlig HH (1966) J Electrochem Soc 113:1262CrossRefGoogle Scholar
  4. 4.
    Hermas AA, Ogura K, Takagi S, Adachi T (1995) Corrosion 51:3CrossRefGoogle Scholar
  5. 5.
    Bandy R, Van Rooyen D (1983) Corrosion 39:227CrossRefGoogle Scholar
  6. 6.
    Bayoumi FM, Ghanem WA (2005) Mater Lett 59:3311CrossRefGoogle Scholar
  7. 7.
    Mudali UK, Reynders B, Stratmann M (1999) Corros Sci 41:179CrossRefGoogle Scholar
  8. 8.
    Tsai WT, Reynders B, Stratmann M, Grabke HJ (1993) Corros Sci 34:1647CrossRefGoogle Scholar
  9. 9.
    Clayton CR, Halada P, Kearns R (1995) Mater Sci Eng A 198:135CrossRefGoogle Scholar
  10. 10.
    Pawlick LA, Kelly RG (1995) J Corros Sci Eng 1:15Google Scholar
  11. 11.
    Singh VB, Upadhyay BN (1998) Corros Sci 40:705CrossRefGoogle Scholar
  12. 12.
    Singh VK, Singh VB (1988) Corros Sci 28:385CrossRefGoogle Scholar
  13. 13.
    Singh VB, Gupta A (2005) Ind J Chem Tech 12:347Google Scholar
  14. 14.
    Keller P, Strehblow HH (2004) Corros Sci 46:1939CrossRefGoogle Scholar
  15. 15.
    Wilde BE, Hodge FG (1969) Electrochim Acta 14:619CrossRefGoogle Scholar
  16. 16.
    Rozenfeld IL (1981) Corrosion 37:371CrossRefGoogle Scholar
  17. 17.
    Greene ND (1960) J Electrochem Soc 107:4571CrossRefGoogle Scholar
  18. 18.
    Lee JW, Osseo-Asare K, Pickering HW (1985) J Electrochem Soc 132:550CrossRefGoogle Scholar
  19. 19.
    Frankenthal RP (1967) J Electrochem Soc 114:542CrossRefGoogle Scholar
  20. 20.
    Hermas AA, Ogura K, Adachi T (1995) Electrochim Acta 40:837CrossRefGoogle Scholar
  21. 21.
    Mazza F, Torchio S, Ghislandi N (1984) In: Proceedings of the 9th international congress on metallic corrosion, Toronto, vol. I, p 102Google Scholar
  22. 22.
    Szklarska -Smialowska Z, Mankowski J (1982) Corros Sci 22:1105CrossRefGoogle Scholar
  23. 23.
    Umebayashi R, Akao N, Hara N, Sugimoto K (2003) J Electrochem Soc 150:B295CrossRefGoogle Scholar
  24. 24.
    Zhang YS, Zhu XM (1999) Corros Sci 41:1817CrossRefGoogle Scholar
  25. 25.
    Yang WP, Costa D, Marcus P (1994) J Electrochem Soc 141:2669CrossRefGoogle Scholar
  26. 26.
    Asami K, Hashimoto K, Musumoto T, Shimodaira S (1976) Corros Sci 16:909CrossRefGoogle Scholar
  27. 27.
    Clayton CR, Olefjord I (2002) In: Corrosion mechanism in theory and practice. Marcel Dekker, New York, p 217CrossRefGoogle Scholar
  28. 28.
    Mansfeld F (1973) J Electrochem Soc 120:188CrossRefGoogle Scholar
  29. 29.
    El-Naggar MM (2006) Applied Surf Sci R52:6179CrossRefGoogle Scholar
  30. 30.
    Szklarska-Smialowska Z (1984) In: Proceedings of the 9th international congress on metallic corrosion, Toronto, vol. II, p 112Google Scholar
  31. 31.
    Tromans D, Ahmed T (1998) J Electrochem Soc 145:601CrossRefGoogle Scholar
  32. 32.
    Cerquetti A, Mazza F (1973) Corros Sci 13:337CrossRefGoogle Scholar
  33. 33.
    Badawy WA, Ismail KM, Fathi M (2005) Electrochim Acta 50:3603CrossRefGoogle Scholar
  34. 34.
    Pistorius PC, Burstein GT (1992) Corros Sci 33:1885CrossRefGoogle Scholar
  35. 35.
    Van Muylder J, Dezoubov N, Pourbaix M (1962) Report 101, CEBELCOR, Brussels, BelgiumGoogle Scholar
  36. 36.
    Ujiro T, Satoh S, Staehle RW, Smyrl WH (2001) Corros Sci 43:2185CrossRefGoogle Scholar
  37. 37.
    Ogura S, Sugimoto K, Sawada Y (1976) Corros Sci 16:323CrossRefGoogle Scholar
  38. 38.
    Singh DDN, Gaur B, Ghosh R, Singh BK (1998) NML Tech J 40:77Google Scholar
  39. 39.
    Carranza RM, Alvarez MG (1996) Corros Sci 38:909CrossRefGoogle Scholar
  40. 40.
    Barbucci A, Cerisola G, Cabot PL (2002) J Electrochem Soc 149:B534CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of ChemistryBanaras Hindu UniversityVaranasiIndia

Personalised recommendations