Advertisement

Journal of Materials Science

, Volume 42, Issue 18, pp 7806–7811 | Cite as

Structural unit and faceting description of Σ3 asymmetric tilt grain boundaries

  • Mark A. Tschopp
  • David L. McDowellEmail author
Article

Abstract

Atomistic simulations are employed to investigate the structure of Σ3 asymmetric tilt grain boundaries (ATGBs) with boundary planes rotated about the \(\langle 110 \rangle\) misorientation axis in Cu and Al. Results show that the structural units (SUs) and faceting of all 25 Σ3 ATGBs in Cu and Al intermediate to the coherent twin boundary and the symmetric incoherent twin boundary can be completely defined in terms of SUs for these two symmetric boundaries. A structural unit and faceting description for Σ3 asymmetric tilt grain boundaries is presented. Interestingly, this description is identical for both low stacking fault energy Cu and high stacking fault energy Al; only the dissociation width of the D structural unit on the incoherent twin facet differs in Cu and Al. A model based upon the coincidence plot and the structural units of the Σ3 coherent and incoherent twin boundaries is shown to accurately describe the structural units and faceting for all calculated Σ3 asymmetric tilt grain boundaries in this study. This model can also be extended to continuum descriptions of these boundaries to facilitate higher scale computational models.

Keywords

Stack Fault Energy Misorientation Angle Coincident Site Lattice High Stack Fault Energy Tilt Axis 

Notes

Acknowledgements

This material is based upon work supported under a NSF Graduate Research Fellowship. This work was partially supported by the National Center for Supercomputing Applications under DMR060019N and utilized Cobalt. Additional support of the IHPCL at the Georgia Tech College of Computing is acknowledged. D.L.M. is grateful for the support of the Carter N. Paden, Jr. Distinguished Chair in Metals Processing for additional support of this work.

References

  1. 1.
    Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Clarendon Press, OxfordGoogle Scholar
  2. 2.
    Sutton AP, Vitek V (1983) Philos Trans R Soc Lond A 309:37CrossRefGoogle Scholar
  3. 3.
    Rittner JD, Seidman DN, Merkle KL (1996) Phys Rev B 53:4241CrossRefGoogle Scholar
  4. 4.
    Bishop GH, Chalmers B (1968) Scr Metal 2:133CrossRefGoogle Scholar
  5. 5.
    Sutton AP, Vitek V (1983) Philos Trans R Soc Lond A 309:55CrossRefGoogle Scholar
  6. 6.
    Rittner JD, Seidman DN (1996) Phys Rev B 54:6999CrossRefGoogle Scholar
  7. 7.
    Pawaskar DN, Miller R, Phillips R (2001) Phys Rev B 63:214105CrossRefGoogle Scholar
  8. 8.
    Tschopp MA, Tucker GJ, McDowell DL (2007) Acta Mater, doi:10.1016/j.actamat.2007.03.012CrossRefGoogle Scholar
  9. 9.
    Suzuki A, Mishin Y (2003) Interface Sci 11:425CrossRefGoogle Scholar
  10. 10.
    Suzuki A, Mishin Y (2003) Interface Sci 11:131CrossRefGoogle Scholar
  11. 11.
    Janssens K, Olmsted D, Holm E, Foiles S, Plimpton S, Derlet P (2006) Nat Mater 5:124CrossRefGoogle Scholar
  12. 12.
    Traut Z, Upmanyu M, Karma A (2006) Science 314:632CrossRefGoogle Scholar
  13. 13.
    Sansoz F, Molinari JF (2004) Scr Mater 50:1283CrossRefGoogle Scholar
  14. 14.
    Sansoz F, Molinari JF (2005) Acta Mater 53:1931CrossRefGoogle Scholar
  15. 15.
    Spearot DE, Jacob KI, McDowell DL (2005) Acta Mater 53:3579CrossRefGoogle Scholar
  16. 16.
    Spearot DE, Jacob KI, McDowell DL (2006) Int J Plasticity 23:143CrossRefGoogle Scholar
  17. 17.
    Spearot D, Tschopp M, Jacob K, McDowell D (2007) Acta Mater 55:705CrossRefGoogle Scholar
  18. 18.
    Hofmann D, Finnis MW (1994) Acta Metall Mater 42:3555CrossRefGoogle Scholar
  19. 19.
    Schmidt C, Ernst F, Finnis MW, Vitek V (1995) Phys Rev Lett 75:2160CrossRefGoogle Scholar
  20. 20.
    Ernst F, M.W. Finnis, Hofmann D, T.Muschik, Schonberger U, Wolf U, Methfessel M (1992) Phys Rev Lett 69:620CrossRefGoogle Scholar
  21. 21.
    Schiøtz J, Di Tolla FD, Jacobsen KW (1998) Nature 391:561CrossRefGoogle Scholar
  22. 22.
    Zhang H, Srolovitz DJ (2006) Acta Mater 54:623CrossRefGoogle Scholar
  23. 23.
    Wolf U, Ernst F, Muschik T, Finnis MW, Fischmeister HF (1992) Philos Mag A 66:991CrossRefGoogle Scholar
  24. 24.
    Ernst F, Finnis MW, Koch A, Schmidt C, Straumal B, Gust W (1996) Zeitschrift fur Metallkunde 87:911Google Scholar
  25. 25.
    Tschopp MA, McDowell DL (2007) Philos Mag, doi: 10.1080/14786430701255895CrossRefGoogle Scholar
  26. 26.
    Saylor DM, Morawiec A, Rohrer GS (2003) Acta Mater 51:3663CrossRefGoogle Scholar
  27. 27.
    Saylor DM, El Dasher BS, Rollett AD, Rohrer GS (2004) Acta Mater 52:3649CrossRefGoogle Scholar
  28. 28.
    Kim C-S, Hu Y, Rohrer GS, Randle V (2005) Scr Mater 52:633CrossRefGoogle Scholar
  29. 29.
    Kim C-S, Rollett AD, Rohrer GS (2006) Scr Mater 54:1005CrossRefGoogle Scholar
  30. 30.
    Barg AI, Rabkin E, Gust W (1995) Acta Metall Mater 43:4067CrossRefGoogle Scholar
  31. 31.
    Hsieh TE, Balluffi RW (1989) Acta Metall 37:2133CrossRefGoogle Scholar
  32. 32.
    Straumal BB, Polyakov SA, Bischoff E, Gust W, Mittemeijer EJ (2001) Interface Sci 9:287CrossRefGoogle Scholar
  33. 33.
    Lee SB, Sigle W, Ruhle M (2003) Acta Mater 51:4583CrossRefGoogle Scholar
  34. 34.
    Straumal BB, Semenov VN, Khruzhcheva AS, Watanabe T (2005) J Mater Sci 40:871CrossRefGoogle Scholar
  35. 35.
    Straumal BB, Polyakov SA, Bischoff E, Gust W, Baretzky B (2005) Acta Mater 53:247CrossRefGoogle Scholar
  36. 36.
    Straumal BB, Polyakov SA, Mittemeijer EJ (2006) Acta Mater 54:167CrossRefGoogle Scholar
  37. 37.
    Minkwitz C, Herzig C, Rabkin E, Gust W (1999) Acta Mater 47:1231CrossRefGoogle Scholar
  38. 38.
    Miyamoto H, Ikeuchi K, Mimaki T (2004) Scr Mater 50:1417CrossRefGoogle Scholar
  39. 39.
    Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD (2001) Phys Rev B 63:224106CrossRefGoogle Scholar
  40. 40.
    Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA (1999) Phys Rev B 59:3393CrossRefGoogle Scholar
  41. 41.
    Kelchner CL, Plimpton SJ, Hamilton JC (1998) Phys Rev B 58:11085CrossRefGoogle Scholar
  42. 42.
    Kronberg ML, Wilson FH (1949) Am Inst Mining Metall Eng—J Metals 1:501Google Scholar
  43. 43.
    Sutton AP (1988) Acta Metall 36:1291CrossRefGoogle Scholar
  44. 44.
    Wang G, Sutton AP, Vitek V (1984) Acta Metall 32:1093CrossRefGoogle Scholar
  45. 45.
    Tschopp MA, McDowell DL (2007) Philos Mag, submitted for publicationGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.G.W. Woodruff School of Mechanical Engineering, School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations