Advertisement

Journal of Materials Science

, Volume 42, Issue 10, pp 3552–3556 | Cite as

Effect of crystal orientation on the ductility in AZ31 Mg alloy sheets produced by equal channel angular rolling

  • Yong Qi Cheng
  • Zhen Hua ChenEmail author
  • Wei Jun Xia
Article

Abstract

Shearing deformation was applied to AZ31 magnesium alloy sheets by a new concept processing, so-called equal channel angular rolling (ECAR) processing for the development of a different crystal orientation compared with the as-received sheets. The results indicated that deformation behavior was changed obviously and a clear yield phenomenon appeared followed by a clear work hardening state region after ECAR processing. And the elongation-to-failure of the ECARed specimens exhibited over 24%, which was almost twice larger than that of the as-received specimens. All of these can be owing to the modification of the crystal orientation.

Keywords

Crystal Orientation Basal Slip Rolling Plane Ultimate Tensile Stress Magnesium Alloy Sheet 

References

  1. 1.
    Mukai T, Yamanoi M, Watanabe H, Higashi K (2001) Scripta Mater 45:89CrossRefGoogle Scholar
  2. 2.
    Watanabe H, Takara A, Somekawa H, Mukai T, Higashi K (2005) Scripta Mater 52:449CrossRefGoogle Scholar
  3. 3.
    Yoshida Y, Cisar L, Kamado S, Kojima Y (2003) Mater Trans 44:468CrossRefGoogle Scholar
  4. 4.
    Agnew SR, Horton JA, Lillo TM, Brown DB (2004) Scripta Mater 50:377CrossRefGoogle Scholar
  5. 5.
    Kim WJ, An CW, Kim YS, Hong SI (2002) Scripta Mater 47:39CrossRefGoogle Scholar
  6. 6.
    Couret A, Cailiard D (1989) Phil Mag A59:783CrossRefGoogle Scholar
  7. 7.
    Iwanaga K, Tashiro H, Okamoto H, Shimizu K (2004) J Mater Process Tech 155–156:1313CrossRefGoogle Scholar
  8. 8.
    Perez-Prado MT, Valle JA, Contreras JM, Ruano OA (2004) Scripta Mater 50:661CrossRefGoogle Scholar
  9. 9.
    Valle JA, Prado MT, Ruano OA (2003) Mater Sci Eng A 355:68CrossRefGoogle Scholar
  10. 10.
    Chino Y, Mabuchi M, Kishihara R, Hosokawa H, Yamada Y, Wen C, Shimojima K, Iwasaki H (2002) Mater Trans 43:2554CrossRefGoogle Scholar
  11. 11.
    Watanabe H, Mukai T, Ishikawa K (2004) J Mater Sci 39:1477CrossRefGoogle Scholar
  12. 12.
    Kim SH, You BS, Yim CD, Seo YM (2005) Mater Lett 59:3876CrossRefGoogle Scholar
  13. 13.
    Cheng YQ, Chen ZH, Xia WJ, Fu DF (2005) Chin J Nonferrous Met 15:1369Google Scholar
  14. 14.
    Kim HK, Kim WJ (2004) Mater Sci Eng A 385:300CrossRefGoogle Scholar
  15. 15.
    Somekawa H, Mukai T (2005) Scripta Mater 53:541CrossRefGoogle Scholar
  16. 16.
    Koike J, Ohyama R, Kobayashi T, Suzuki M, Maruyama K (2003) Mater Trans 44:445CrossRefGoogle Scholar
  17. 17.
    Koike J, Ohyama R (2005) Acta Mater 53:1963CrossRefGoogle Scholar
  18. 18.
    Koike J, Kobayashi T, Mukai T, Watanabe H, Suzuki M, Maruyama K, Higashi K (2003) Acta Mater 51:2055CrossRefGoogle Scholar
  19. 19.
    Agnew SR, Tomé CN, Brown DW, Holden TM, Vogel SC (2003) Scripta Mater 48:1003CrossRefGoogle Scholar
  20. 20.
    Murr LE, Meyers MA, Niou CS, Chen YJ, Pappu S, Kennedy C (1997) Acta Mater 45:157CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Material Science and EngineeringHunan UniversityChangshaChina

Personalised recommendations