Journal of Materials Science

, Volume 42, Issue 16, pp 6494–6500 | Cite as

Tensile, impact and dielectric properties of three dimensional orthogonal aramid/glass fiber hybrid composites

  • Lan Yao
  • Wenbin Li
  • Nan Wang
  • Wang Li
  • Xu Guo
  • Yiping Qiu


Aramid/glass hybrid composites with three different stacking sequences and their corresponding single fiber type composites have been fabricated and their tensile, impact and dielectric properties were investigated. The trend of tensile strength and modulus of the composites followed the rule of mixture (ROM) closely and a small but positive hybrid effect for tensile strength of the hybrid composites was observed. The hybrid composites in general had a higher impact resistance than the single fiber type composites and the hybrid composite in which fiber volume fractions for glass and aramid fiber were the most balanced showed the highest impact ductility. The aramid fiber composite showed a lower dielectric constant and a higher dielectric loss than the glass fiber composites. However, the dielectric constant of the hybrid composites decreased first and then increased as the volume fraction of aramid fiber increased, which did not follow the mixing rule for dielectric constants of compounds. The dielectric loss of the composites increased monotonically as the volume fraction of aramid fiber increased which agreed well with the mixing rule.


Hybrid Composite Fiber Volume Fraction Weft Yarn Aramid Fiber Warp Yarn 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project was jointly sponsored by the National Natural Science Foundation (No. 10372092) and Shanghai Pujiang Program (No. 06PJ14011).


  1. 1.
    Chiu CH, Cheng CC (2003) Text Res J 73:37CrossRefGoogle Scholar
  2. 2.
    Naik NK, Sridevi E (2002) J Reinf Plast Compos:21 1149CrossRefGoogle Scholar
  3. 3.
    Lin CW, Hsing WH, Lu CK, Yao SC (1997) SAMPE J 33:24Google Scholar
  4. 4.
    Mcilhagger R, Hill BJ, Brown D, Limmer L (1995) Compos Eng 5:1187CrossRefGoogle Scholar
  5. 5.
    Bogdanovich AE, Wigent DE, Whitney TJ (2003) SAMPE J 39:6Google Scholar
  6. 6.
    Hashmi SAR, Kitano T, Chand N (2003) Polym Compos 24:149CrossRefGoogle Scholar
  7. 7.
    Shan Y, Liao K (2002) Int J Fatigue 24:847Google Scholar
  8. 8.
    Belingardi G, Cavatorta MP, Frasca C (2006) Compos Sci Technol 66:222CrossRefGoogle Scholar
  9. 9.
    De Medeiros ES, Agnelli JAM, Joseph K, De Carvalho LH, Mattoso LHC (2005) Polym Compos 26:1CrossRefGoogle Scholar
  10. 10.
    Sohn MS, Hu XZ, Kim JK (2001) Polym Polym Compos 9:157Google Scholar
  11. 11.
    Qiu YP, Schwartz P (1993) Compos Sci Technol 47:289CrossRefGoogle Scholar
  12. 12.
    Qiu YP, Schwartz P (1993) Compos Sci Technol 47:303CrossRefGoogle Scholar
  13. 13.
    Marom G, Fischer S, Tuler FR, Wagner HD (1978) J Mater Sci 13:1419CrossRefGoogle Scholar
  14. 14.
    Summerscales J, Short D (1978) Composites 4:157Google Scholar
  15. 15.
    Kalaprasad G, Mathew G, Pavithran C, Thomas S (2003) J Appl Polym Sci 89:432CrossRefGoogle Scholar
  16. 16.
    Kalaprasad G, Francis B, Thomas S, Kumar CR, Pavithran C, Groeninckx G, Thomas S (2004) Polym Int 53:1624CrossRefGoogle Scholar
  17. 17.
    Sreekala MS, George J, Kumaran MG, Thomas S (2002) Compos Sci Technol 62:339CrossRefGoogle Scholar
  18. 18.
    Thwe MM, Liao K (2003) J Mater Sci 38:363CrossRefGoogle Scholar
  19. 19.
    Ahmed KS, Vijayarangan S, Rajput C (2006) J Reinf Plast Compos 25:1549CrossRefGoogle Scholar
  20. 20.
    Abdullah AlKafi, Abedin MZ, Beg MDH, Pickering KL, khan MA (2006) J Reinf Plast Compos 25:575CrossRefGoogle Scholar
  21. 21.
    Naik NK, Ramasimha R, Arya H, Prabhu SV, Shamarao N (2001) Composites Part B 32:565CrossRefGoogle Scholar
  22. 22.
    Gustin J, Joneson A, Mahinfalah M, Stone J (2005) Compos Struct 69:396CrossRefGoogle Scholar
  23. 23.
    Park R, Jang J (2000) Polym Compos 21:231CrossRefGoogle Scholar
  24. 24.
    Park R, Jang J (2000) J Compos Mater 34:1117CrossRefGoogle Scholar
  25. 25.
    Park R, Jang J (2001) J Mater Sci 36:2359CrossRefGoogle Scholar
  26. 26.
    Park R, Jang J (2001) Polym Compos 22:80CrossRefGoogle Scholar
  27. 27.
    Wan YZ, Chen GC, Huang Y, Li QY, Zhou FG, Xin JY, Wang YL (2005) Mater Sci Eng A 398:227CrossRefGoogle Scholar
  28. 28.
    Kostar TD, Chou TW, Popper P (2000) J Mater Sci 35:2175CrossRefGoogle Scholar
  29. 29.
    Cho JW, Choi JS, Yoon YS (2002) J Appl Polym Sci 83:2447CrossRefGoogle Scholar
  30. 30.
    Bleay SM, Humberstone L (1999) Compos Sci Technol 59:1321CrossRefGoogle Scholar
  31. 31.
    Chin WS, Lee DG (2006) Compos Struct 74:153CrossRefGoogle Scholar
  32. 32.
    Jawad SA, Ahmad M, Ramadin Y, Zihlif A, Paesano A, Martuscelli E, Ragosta G (1993) Polym Int 32:23CrossRefGoogle Scholar
  33. 33.
    Milutinovic-Nikolic A, Presburger-Ulnikovic V, Velickovic S, Aleksic R (2003) J Mater Sci: Mater Electron 14:75Google Scholar
  34. 34.
    Seo IS, Chin WS, Lee DG (2004) Compos Struct 66:533CrossRefGoogle Scholar
  35. 35.
    Chiang MYM, Wang XF, Schulthelsz CR, He JM (2005) Compos Sci Technol 65:1719CrossRefGoogle Scholar
  36. 36.
    Hippel AV (1954) Dielectric and waves. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Lan Yao
    • 1
    • 2
  • Wenbin Li
    • 1
    • 2
  • Nan Wang
    • 1
    • 2
  • Wang Li
    • 1
    • 2
  • Xu Guo
    • 1
    • 2
  • Yiping Qiu
    • 1
    • 2
  1. 1.Key Laboratory of Textile Science and TechnologyMinistry of EducationShanghaiChina
  2. 2.Department of Textile Materials Science, College of TextilesDonghua UniversityShanghaiChina

Personalised recommendations