Advertisement

Journal of Materials Science

, Volume 42, Issue 10, pp 3502–3507 | Cite as

Preparation and characterisation of controlled porosity alginate hydrogels made via a simultaneous micelle templating and internal gelation process

  • S. Partap
  • A. Muthutantri
  • I. U. Rehman
  • G. R. Davis
  • J. A. DarrEmail author
Article

Abstract

Controlled porosity alginate hydrogel monoliths were synthesised by simultaneous micelle templating (MT) and an internal gelation reaction. In water, the self assembling surfactant, cetyltrimethylammonium bromide (CTAB) formed non-spherical micelles that were used as a template for pore formation. The porous microstructure was assessed by mercury intrusion porosimetry (MIP), helium pycnometry, X-ray microtomography (XMT) and scanning electron microscopy (SEM), respectively. The MT hydrogels displayed relatively monodisperse pore size distributions (with pore sizes ranging from 32.5 μm to 164.0 μm), high total pore volumes (4.5–20.3 cm3/g) and high degrees of porosity (83–97%). Some control over pore size distributions was achieved by varying the surfactant concentration; higher surfactant concentrations, led to smaller pores with lower total pore volumes. Uniaxial compression testing revealed that hydrogels made via MT are stable in cell culture media for 28 days. Fourier transform infrared (FTIR) spectroscopy data, suggested that all surfactant could be removed from the final product by washing with ethanol and water, making these hydrogels potentially suitable for tissue engineering (TE) applications.

Keywords

Alginate Pore Size Distribution Surfactant Concentration Adipic Acid Mercury Intrusion Porosimetry 

Notes

Acknowledgements

We thank the following for technical assistance; Z. Luklinska, R. Whitenstall and M. Willis (EM unit) and V. Ford (CADCAM), J. Caulfield (Technical assistance) and Dr. M. Phillips (Experimental officer). N. Houston (Honeywill & Stein) is kindly thanked for supplying the sodium alginate. EPSRC is thanked for an Advanced Research Fellowship entitled “Next Generation Biomedical Materials using Supercritical Fluids” (JAD, grant no. GR/A11304/01), for a case award (SP) and funding (IR and IRC core grant, respectively), and for substantial funding for the Clean Materials Technology Group.

References

  1. 1.
    Drury JL, Mooney DJ (2003) Biomaterials 24:4337CrossRefGoogle Scholar
  2. 2.
    Hutmacher DW (2000) Biomaterials 21:2529CrossRefGoogle Scholar
  3. 3.
    Hollister SJ, Maddox RD, Taboas JM (2002) Biomaterials 23:4095CrossRefGoogle Scholar
  4. 4.
    Hoffman AS (2002) Adv Drug Deliv Rev 54:3CrossRefGoogle Scholar
  5. 5.
    Peters MC, Isenberg BC, Rowley JA, Mooney DJ (1998) J Biomater Sci Polym Ed 9:1267CrossRefGoogle Scholar
  6. 6.
    Langer R, Peppas NA (2003) Aiche J 49:2990CrossRefGoogle Scholar
  7. 7.
    Ju HK, Kim SY, Lee YM (2001) Polymer 42:6851CrossRefGoogle Scholar
  8. 8.
    Lee KY, Mooney DJ (2001) Chem Rev 101:1869CrossRefGoogle Scholar
  9. 9.
    Whang K, Thomas CH, Healy KE, Nuber G (1995) Polymer 36:837CrossRefGoogle Scholar
  10. 10.
    Zmora S, Glicklis R, Cohen S (2002) Biomaterials 23:4087CrossRefGoogle Scholar
  11. 11.
    Chen GP, Ushida T, Tateishi T (2001) Biomaterials 22:2563CrossRefGoogle Scholar
  12. 12.
    Sheridan MH, Shea LD, Peters MC, Mooney DJ (2000) J Control Release 64:91CrossRefGoogle Scholar
  13. 13.
    Mooney DJ, Baldwin DF, Suh NP, Vacanti LP, Langer R (1996) Biomaterials 17:1417CrossRefGoogle Scholar
  14. 14.
    Eiselt P, Yeh J, Latvala RK, Shea LD, Mooney DJ (2000) Biomaterials 21:1921CrossRefGoogle Scholar
  15. 15.
    Choi BY, Park HJ, Hwang SJ, Park JB (2002) Int J Pharm 239:81CrossRefGoogle Scholar
  16. 16.
    Kawanishi M, Ushida T, Kaneko T, Niwa H, Fukubayashi T, Nakamura K, Oda H, Tanaka S, Tateishi T (2004) Mater Sci Eng C 24:431CrossRefGoogle Scholar
  17. 17.
    Cameron NR (2005) Polymer 46:1439CrossRefGoogle Scholar
  18. 18.
    Busby W, Cameron NR, Jahoda CAB (2001) Biomacromolecules 2:154CrossRefGoogle Scholar
  19. 19.
    Butler R, Davies CM, Cooper AI (2001) Adv Mater 13:1459CrossRefGoogle Scholar
  20. 20.
    Butler R, Hopkinson I, Cooper AI (2003) J Am Chem Soc 125:14473CrossRefGoogle Scholar
  21. 21.
    Partap S, Darr JA, Jones JR, Rehman I (2006) Adv Mater 18:501CrossRefGoogle Scholar
  22. 22.
    Song WL, Li A, Xu XQ (2003) Ind Eng Chem Res 42:949CrossRefGoogle Scholar
  23. 23.
    Kim WJ, Yang SM (2000) J Colloid Interface Sci 232:225CrossRefGoogle Scholar
  24. 24.
    Ruckenstein E, Chao ZS (2001) Nano Lett 1:739CrossRefGoogle Scholar
  25. 25.
    Xu J, Luan ZH, He HY, Zhou WZ, Kevan L (1998) Chem Mater 10:3690CrossRefGoogle Scholar
  26. 26.
    Davis GR, Elliott JC (2003) J Phys IV France 104:131CrossRefGoogle Scholar
  27. 27.
    Kong HJ, Lee KY, Mooney DJ (2002) Polymer 43:6239CrossRefGoogle Scholar
  28. 28.
    Moresi M, Mancini M, Bruno M, Rancini R (2001) J Text Stud 32:375CrossRefGoogle Scholar
  29. 29.
    Mitchell JR (1980) J Text Stud 11:315CrossRefGoogle Scholar
  30. 30.
    Da Rocha PSR, Harrison KL, Johnston KP (1999) Langmuir 15:419CrossRefGoogle Scholar
  31. 31.
    Schubert BA, Kaler EW, Wagner NJ (2003) Langmuir 19:4079CrossRefGoogle Scholar
  32. 32.
    Vinson PK, Bellare JR, Davis HT, Miller WG, Scriven LE (1991) J Colloid Interface Sci 142:74CrossRefGoogle Scholar
  33. 33.
    Subramanian V, Ducker WA (2000) Langmuir 16:4447CrossRefGoogle Scholar
  34. 34.
    Kim WJ, Yang SM, Kim M (1997) J Colloid Interface Sci 194:108CrossRefGoogle Scholar
  35. 35.
    Cates ME, Candau SJ (1990) J Phys Condens Matter 2:6869CrossRefGoogle Scholar
  36. 36.
    Fourest E, Volesky B (1996) Environ Sci Technol 30:277CrossRefGoogle Scholar
  37. 37.
    Sartori C, Finch DS, Ralph B, Gilding K (1997) Polymer 38:43CrossRefGoogle Scholar
  38. 38.
    Kadokawa J, Saitou S, Shoda S (2005) Carbohydr Polym 60:253CrossRefGoogle Scholar
  39. 39.
    Wasikiewicz JM, Yoshii F, Nagasawa N, Wach RA, Mitomo H (2005) Radiat Phys Chem 73:287CrossRefGoogle Scholar
  40. 40.
    Pereira L, Sousa A, Coelho H, Amado AM, Ribeiro-Claro PJA (2003) Biomol Eng 20:223CrossRefGoogle Scholar
  41. 41.
    Li HY, Tripp CP (2004) Langmuir 20:10526CrossRefGoogle Scholar
  42. 42.
    Li HY, Tripp CP (2004) J Phys Chem B 108:18318CrossRefGoogle Scholar
  43. 43.
    Ford C, Singh M, Lawson L, He JB, John V, Lu YF, Papadopoulos K, Mcpherson G, Bose A (2004) Colloids Surf B 39:143CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • S. Partap
    • 1
  • A. Muthutantri
    • 1
  • I. U. Rehman
    • 2
  • G. R. Davis
    • 3
  • J. A. Darr
    • 1
    Email author
  1. 1.Department of MaterialsQueen Mary University of LondonLondonUK
  2. 2.IRC in Biomedical MaterialsQueen Mary University of LondonLondonUK
  3. 3.Dental Biophysics Section, Institute of DentistryQueen Mary University of LondonLondonUK

Personalised recommendations