Advertisement

Journal of Materials Science

, Volume 42, Issue 16, pp 6665–6671 | Cite as

Crystallization behaviour and mechanical properties of rapidly solidified Al87.5Ni7Mm5Fe0.5 amorphous alloy

  • K. L. Sahoo
  • P. Poddar
  • Goutam Das
  • B. Ravi Kumar
Article

Abstract

The crystallization behaviour and the mechanical properties of rapidly solidified Al87.5Ni7Mm5Fe0.5 alloy ribbons have been examined in both as-melt-spun and heat-treated condition using differential scanning calorimetry, X-ray diffractometry (XRD), transmission electron microscopy (TEM), tensile testing and Vicker’s microhardness machine. XRD and TEM studies revealed that the as-melt-spun ribbons are fully amorphous. The amorphous ribbon undergoes three-stage crystallization process upon heating. Primary crystallization resulted in the formation of fine nanocrystalline fcc-Al particles embedded in the amorphous matrix. The second and third crystallization stages correspond to the precipitation of Al11(La,Ce)3 and Al3Ni phases, respectively. Microhardness and tensile strength of the ribbons were examined with the variation of temperature and subsequently correlated with the evolved structure. Initially, the microhardness of the ribbon increases with temperature followed by a sharp drop in hardness owing to the decomposition of amorphous matrix that leads to formation of intermetallic compounds

Keywords

Differential Scanning Calorimetry Al3Ni Amorphous Alloy Amorphous Matrix Intermetallic Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors thank Dr. N. Wanderka, Scientist, Hahn–Meitner–Institute Berlin for her help in performing HRTEM measurements and Director, National Metallurgical Laboratory for his permission to publish the paper.

References

  1. 1.
    Inoue A, Horio Y, Kim YH, Masumota T (1992) Mater Trans JIM 33:669CrossRefGoogle Scholar
  2. 2.
    Chen H, He Y, Shiflet GJ (1991) Scripta Metall 25:1421CrossRefGoogle Scholar
  3. 3.
    Inoue A (1998) Prog Mater Sci 43:365CrossRefGoogle Scholar
  4. 4.
    Kim YH, Inoue A, Masumota T (1991) Mater Trans JIM 32:331CrossRefGoogle Scholar
  5. 5.
    Sahoo KL, Wollgarten M, Kim KB, Banhart J (2005) J Mater Res 44:1075Google Scholar
  6. 6.
    Inoue A, Ohtera K, Tsai AP (1988) Jpn J Appl Phys 27:L479CrossRefGoogle Scholar
  7. 7.
    Sahoo KL, Wollgarten M, Haug J, Banhart J (2005) Acta Mater 53:3861CrossRefGoogle Scholar
  8. 8.
    Kim YH, Hiraga K, Inoue A, Masumota T, Jo HH (1994) Mater Trans JIM 35:293CrossRefGoogle Scholar
  9. 9.
    Kim YH, Inoue A, Masumota T (1990) Mater Trans JIM 32:747CrossRefGoogle Scholar
  10. 10.
    Ping DH, Hono K, Inoue A (2000) Metall Mater Trans 31A:607CrossRefGoogle Scholar
  11. 11.
    Zhong ZC, Jiang XY, Greer AL (1997) Mater Sci Eng A 226–228:531CrossRefGoogle Scholar
  12. 12.
    Kim HS, Warren PJ, Cantor B, Lee HR (1999) Nano Struc Mater 11:241CrossRefGoogle Scholar
  13. 13.
    Kim TS, Hong SJ, Lee BT (2003) Mater Sci Eng A 363:81CrossRefGoogle Scholar
  14. 14.
    Hong SJ, Kim HS, Suryanarayana C, Chun BS (2003) Mater Sci Tech.19:966Google Scholar
  15. 15.
    Inoue A (1998) Prog Mater Sci 43:365CrossRefGoogle Scholar
  16. 16.
    Wang SH, Bian XF, Wang HR (2003) Mater Lett 58:539CrossRefGoogle Scholar
  17. 17.
    Chang TH, Botten RR (1997) Mater Sci Eng A 226–228:183CrossRefGoogle Scholar
  18. 18.
    He Y, Poon SJ, Shiflet GJ (1988) Science 241:1640CrossRefGoogle Scholar
  19. 19.
    Allen DR, Foley JC, Perepezko JH (1998) Acta Met 46:431CrossRefGoogle Scholar
  20. 20.
    Chen LC, Spaepen F (1991) J Appl Phys 69:679CrossRefGoogle Scholar
  21. 21.
    Hawksworth A, Rainforth WM, Jones H (1999) Mater Sci Eng A 262:159CrossRefGoogle Scholar
  22. 22.
    Joint committee on powder diffraction standards, files No. 24–501 and 48–1841Google Scholar
  23. 23.
    Chen LC, Spaepen F (1988) Nature 336:336CrossRefGoogle Scholar
  24. 24.
    Johnson WA, Mahl RF (1939) Trans Am Inst Min Metal Eng 135:416Google Scholar
  25. 25.
    Avrami M (1941) J Chem Phys 9:177CrossRefGoogle Scholar
  26. 26.
    Christian J (1975) The theory of transformation in metals and alloys, Part 1, Equilibrium and general kinetic theory. Pergamon press, OxfordGoogle Scholar
  27. 27.
    Munoz-Morris MA, Surinach S, Varga LK, Baro MD, Morris DG (2002) Scripta Mater 47:31CrossRefGoogle Scholar
  28. 28.
    Kim TS, Hong SJ, Lee BT (2003) Mater Sci Eng A 363:81CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • K. L. Sahoo
    • 1
  • P. Poddar
    • 1
  • Goutam Das
    • 1
  • B. Ravi Kumar
    • 1
  1. 1.National Metallurgical LaboratoryJamshedpurIndia

Personalised recommendations