Journal of Materials Science

, Volume 42, Issue 17, pp 7227–7238 | Cite as

Improvement of the foaming process for 4045 and 6061 aluminium foams by using the Taguchi methodology

  • Eusebio SolórzanoEmail author
  • José Antonio Reglero
  • Miguel Ángel Rodríguez-Pérez
  • José Antonio de Saja
  • María Luz Rodríguez-Méndez


Taguchi methodology has been applied to the production process of aluminium foams to investigate the variability detected in several properties (including bulk density, outward appearance and density homogeneity along foaming direction), for foaming tests carried out under identical conditions. The analysis of the process has been performed separately for two different alloys, the 4045 and 6061. The results have allowed finding the main factors that influence those properties. In addition, it has been possible to establish those foaming conditions able to minimize the variability in density, to improve the outward appearance and to obtain a higher homogeneity in density, all at the same time. Different final factors have been found for the two alloys; such differences have been explained in terms of the different viscosity of the aluminium melts as well as the different content of foaming agent.


Foam Taguchi Method Noise Factor Aluminium Foam Metal Foam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from the Spanish Ministry of Science and Education (MAT 2003-06797, MAT 2002-04505-C02-01, FPU grants) is gratefully acknowledged. FEDER funding is also acknowledged.


  1. 1.
    Banhart J (2001) Prog Mater Sci 46:559CrossRefGoogle Scholar
  2. 2.
    Baumgärtner D, Banhart J (2000) Adv Eng Mater 2(4):168CrossRefGoogle Scholar
  3. 3.
    Banhart J (1999) Europhys News 1/1999Google Scholar
  4. 4.
    Simancík F, Kovácik J, Schörghuber F (1997) In: Banhart J (ed) Metallschäume, proc symp metal foams. MIT-Verlag/Publishing Bremen, Bremen, Germany, p 171Google Scholar
  5. 5.
    Schäffler P, Rajner W (2003) International conference “advanced metallic materials.” Smolenice, Slovakia, p 258Google Scholar
  6. 6.
    Maurer M, Zhao L, Lugscheider E (2002) Adv Eng Mater 4(10):791CrossRefGoogle Scholar
  7. 7.
    Gergely V, Clyne B (2000) Adv Eng Mater 2(4):175CrossRefGoogle Scholar
  8. 8.
    Duarte I, Banhart J (2000) Acta Mater 48:2349CrossRefGoogle Scholar
  9. 9.
    Helfen L, Baumbach T, Stanzick H, Banhart J, Elmoutaouakkil A, Cloetens P (2002) Adv Eng Mater 4(10):808CrossRefGoogle Scholar
  10. 10.
    Stanzick H, Klenke J, Danilkin S, Banhart J (2002) Appl Phys A 74(Suppl):S1118CrossRefGoogle Scholar
  11. 11.
    Banhart J, Bellmann D, Clemens H (2001) Acta Mater 49:3409CrossRefGoogle Scholar
  12. 12.
    Gergely V, Clyne TW (2004) Acta Mater 52:3047CrossRefGoogle Scholar
  13. 13.
    Koehler SA, Stone HA, Brenner MP, Eggers J (1998) Phys Rev E 58(2):2097Google Scholar
  14. 14.
    Wübben T, Stanzick H, Banhart J, Odenbach S (2003) J Phys: Condens Mater 15:S427CrossRefGoogle Scholar
  15. 15.
    Yang CC, Nakae H (2003) J Mater Process Technol 141:202CrossRefGoogle Scholar
  16. 16.
    Zhaojin WU, Deping HE (2000) Chin Sci Bull 45(18):1667CrossRefGoogle Scholar
  17. 17.
    Yang CC, Nakae H (2000) J Alloys Compd 313:188CrossRefGoogle Scholar
  18. 18.
    Rodríguez-Pérez MA, Almanza O, del Valle JL, González A, de Saja JA (2001) Polym Testing 20(3):253CrossRefGoogle Scholar
  19. 19.
    Pan LK, Wang CC, Hsiao YC, Ho KC (2004) Optics Laser Technol 37:33Google Scholar
  20. 20.
    Taner T, Antony J (2006) Int J Health Care Qual Assur Inc. Leadersh Health Serv, vol 19, p XXVIGoogle Scholar
  21. 21.
    Roy T (1990) A premier on the Taguchi method. Society of Manufacturing Engineers, MichiganGoogle Scholar
  22. 22.
    Bendell J, Disney WA (1989) Pridmore Taguchi methods: applications in world industry. IFS Publications, UKGoogle Scholar
  23. 23.
    Ross PJ (1988) Taguchi techniques for quality engineering. Lost function, Orthogonal experiment, parameters and tolerance design. Mc Graw-HillGoogle Scholar
  24. 24.
    Disndale AT, Quested PN (2004) J Mater Sci 39:7221. DOI: 10.1023/B:JMSC.0000048735.50256.96CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Eusebio Solórzano
    • 1
    Email author
  • José Antonio Reglero
    • 1
  • Miguel Ángel Rodríguez-Pérez
    • 1
  • José Antonio de Saja
    • 1
  • María Luz Rodríguez-Méndez
    • 2
  1. 1.CELLMAT GROUP, Condensed Matter Physics Department, Faculty of SciencesUniversity of ValladolidValladolidSpain
  2. 2.Dpto. Química Inorgánica, E.T.S. Ingenieros IndustrialesUniversidad de ValladolidValladolidSpain

Personalised recommendations