Advertisement

Journal of Materials Science

, Volume 42, Issue 16, pp 6642–6650 | Cite as

Impact response of composites after long-term water immersion

  • Kyriakos BerketisEmail author
  • P. J. Hogg
Article

Abstract

Woven and non-crimped glass fabric reinforced polyester flat composite plates are studied experimentally. Water immersion tests for undamaged and impact damaged specimens are performed. The accelerating effects of increased water temperature on the degradation rate are discussed. The effect of up to 30 months water immersion on the impact behaviour are extensively investigated and compared with pre-water immersion results. The effects of different E-glass fabric reinforcement types, woven and non-crimped, in terms of environmental and impact behaviour are reported. An Environmental Damage Accumulation Metric (EDAM) is proposed and analysed, linking the time of water immersion with a marked change of behaviour in terms of the loss of the elastic component during the impact event.

Keywords

Impact Energy Composite Plate Water Immersion Fibre Volume Fraction Neat Resin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bank LC, Gentry TR, Barkatt A (1995) J Reinforced Plastics Compos 14:559CrossRefGoogle Scholar
  2. 2.
    Weitsman Y (2000) Comprehensive composite materials. Elsevier, New York, p 369CrossRefGoogle Scholar
  3. 3.
    Schutte CL (1994) Mater Sci Eng R13:265CrossRefGoogle Scholar
  4. 4.
    Springer GS, Sanders BA, Tung RW (1980) J Compos Mater 14:213CrossRefGoogle Scholar
  5. 5.
    Boinard E, Pethrick RA, Dalzel-Job J, MacFarlane CJ (2000) J Mater Sci 35:1931CrossRefGoogle Scholar
  6. 6.
    Tsotsis TK, Lee SM (1997) J Reinforced Plastics Compos 16:1609CrossRefGoogle Scholar
  7. 7.
    Pavlidou S, Papaspyrides CD (2003) Composites Part A 34A:1117CrossRefGoogle Scholar
  8. 8.
    Benameur T, Granger R, Vergnaud JM (1995) Polymer Test 14:35CrossRefGoogle Scholar
  9. 9.
    Ciriscioli PR, Lee WI, Peterson DG, Springer GS, Tang J (1987) J Compos Mater 21:225CrossRefGoogle Scholar
  10. 10.
    Ashbee KHG, Wyatt RC (1969) Proc Roy Soc 312:553CrossRefGoogle Scholar
  11. 11.
    Perreux D, Choqueuse D, Davies P (2002) Composites Part A 33:147CrossRefGoogle Scholar
  12. 12.
    Belan F, Bellenger V, Mortaigne B, Verdu J, Yang YS (1996) Compos Sci Technol 56:733CrossRefGoogle Scholar
  13. 13.
    Abrate S (1991) Appl Mech Rev 44:155CrossRefGoogle Scholar
  14. 14.
    Abrate S (1994) Appl Mech Rev 47:517CrossRefGoogle Scholar
  15. 15.
    Cantwell WJ, Morton J (1991) Composites 22:347CrossRefGoogle Scholar
  16. 16.
    Richardson MO, Wisheart MJ (1996) Composites Part A 27:1123CrossRefGoogle Scholar
  17. 17.
    Shoeppner GA, Abrate S (2000) Composites Part A 31:903CrossRefGoogle Scholar
  18. 18.
    Qi B, Herszberg I (1999) Compos Struct 47:483CrossRefGoogle Scholar
  19. 19.
    Strait LH, Karasek ML, Amateau MF (1992) J Compos Mater 26:2118CrossRefGoogle Scholar
  20. 20.
    Komai K, Minoshima K, Yamasaki H (1995) In: 1st International conference on mechanics of time dependent materials, LjubljanaGoogle Scholar
  21. 21.
    Berketis K (2006) Water immersion and impact damage effects on the residual compressive strength of composites. Materials Department, Queen Mary, University of London, LondonGoogle Scholar
  22. 22.
    Lundgren JE, Gudmundson P (1999) Compos Sci Technol 59:1983CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Materials DepartmentQueen Mary, University of LondonLondonUK

Personalised recommendations