Journal of Materials Science

, Volume 42, Issue 16, pp 6614–6627 | Cite as

Growth of boride layers on the 13% Cr steel surface in a mixture of amorphous boron and KBF4

  • V. I. DybkovEmail author


Two borides FeB and Fe2B were found to form as separate layers at the interface between a 13% Cr steel and boron at 850–950 °C and reaction times up to 12 h. The average chromium content is 8 at.% in the FeB layer and 9 at.% in the Fe2B layer. Both layers are characterized by a pronounced texture. The strongest reflections are {002} and {020} for the orthorhombic FeB phase and {002} for the tetragonal Fe2B phase. Diffusional growth kinetics of boride layers are close to parabolic and can alternatively be described by a system of two non-linear differential equations, producing a good fit to the experimental data. Annealing of a borided steel sample in the absence of boriding media results in disappearance of the FeB layer. Microhardness values are 17.9 ± 1.5 GPa for the FeB layer, 16.1 ± 0.9 for the Fe2B layer and 5.9 ± 0.3 GPa for the steel base. The abrasive wear resistance of the FeB layer is 25 times greater than that of the steel base. The Fe2B layer yields about a 15-fold increase in wear resistance of steel samples.


Boron Atom Compound Layer Steel Base Boride Layer Abrasive Wear Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This investigation was supported in part by the STCU grant No. 2028. The author is grateful to V. G. Khoruzha, V. R. Sidorko, K. A. Meleshevich and A. V. Samelyuk for their help in conducting the experiments and carrying out the necessary analyses.


  1. 1.
    Voroshnin LG, Lyakhovich LS (1978) Borirovaniye stali. Metallurgiya, Moskwa, (in Russian)Google Scholar
  2. 2.
    Kunst H, Schroll H, Luetje R, Wittel K, Lugscheider E, Weber T, Eschnauer HR, Raub C (1991) In: Ullmann’s Encyclopedia of Industrial Chemistry, vol A16. Verlag Chemie, Weinheim, p 427Google Scholar
  3. 3.
    Sinha AK (1982) Boriding (Boronizing). In: Sinha AK (ed) Metals Handbook. ASM International, Metals Park OH, p 844Google Scholar
  4. 4.
    Hansen M, Anderko K (1958) Constitution of binary alloys, 2nd edn. McGraw-Hill, New-York, p 249Google Scholar
  5. 5.
    Vol AE (1962) Stroeniye i svoystva dvoynikh metallicheskikh system, vol 1. Fizmatgiz, Moskwa, p 679 (in Russian)Google Scholar
  6. 6.
    Massalski TB, Murray JL, Bennett LH, Baker H (eds) (1986) Binary Alloy Phase Diagrams, vol 1. American Society of Metals, Metals Park OH, p 351Google Scholar
  7. 7.
    Okamoto H (2004) J Phase Equilib Diffusion 25:297–298CrossRefGoogle Scholar
  8. 8.
    Brandstötter J, Lengauer W (1997) J Alloys Compd 262–263:390–396CrossRefGoogle Scholar
  9. 9.
    Gurov KP, Kartashkin BA, Ugaste YuE (1981) Vzaimnaya diffusiya v mnogofaznikh metallicheskikh sistemakh. Nauka, Moskwa, (in Russian)Google Scholar
  10. 10.
    Dybkov VI (2002) Reaction diffusion and solid state chemical kinetics. The IPMS Publications, Kyiv, (free access at∼dybkov/V)Google Scholar
  11. 11.
    Voroshnin LG (1981) Borirovaniye promyshlennikh staley i chugunov. Belarus, Minsk, (in Russian)Google Scholar
  12. 12.
    Dybkov VI, Lengauer W, Barmak K (2005) J Alloys Compd 398:113–122CrossRefGoogle Scholar
  13. 13.
    Gorelik SS, Rastorguev LN, Skakov YuA (1970) Rentgenograficheskiy i elektronno-opticheskiy analiz, prilozheniya. Metallurgiya, Moskwa, p 29 (in Russian)Google Scholar
  14. 14.
    Carbucicchio M, Palombarini G (1987) J Mater Sci Lett 6:1147–1149CrossRefGoogle Scholar
  15. 15.
    Martini C, Palombarini G, Carbucicchio M (2004) J Mater Sci 39:933–937CrossRefGoogle Scholar
  16. 16.
    Seith W (1955) Diffusion in metallen. Springer, BerlinCrossRefGoogle Scholar
  17. 17.
    Hauffe K (1955) Reaktionen in und an festen Stoffen. Springer, BerlinCrossRefGoogle Scholar
  18. 18.
    Arkharov VI (1959) Fiz Metall Metalloved 8:193–204Google Scholar
  19. 19.
    Schröder B, Leute V (1980) J Phys Chem Solids 41:827–835CrossRefGoogle Scholar
  20. 20.
    . Fromhold AT, Sato N (1981) Oxid Metals 16:203–220CrossRefGoogle Scholar
  21. 21.
    Dybkov OV, Dybkov VI (2004) J Mater Sci Lett 39:6615–6617CrossRefGoogle Scholar
  22. 22.
    Dybkov VI, Lengauer W, Barmak K (2005) In: Proc 16th Plansee Seminar, Reutte, Austria, May 31-June 4, 2:999–1009Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Physical Chemistry of Inorganic MaterialsInstitute for Problems of Materials ScienceKyivUkraine

Personalised recommendations