Advertisement

Journal of Materials Science

, Volume 42, Issue 16, pp 6578–6582 | Cite as

Superplastic behavior of an extruded eutectic NiAl/Cr(Mo) alloy at intermediate strain rate region

  • Du Xinghao
  • Wu Baolin
  • C. J. Lee
  • J. C. HuangEmail author
Article
  • 74 Downloads

Abstract

The superplastic behavior of cast and hot-extruded NiAl–28Cr–6Mo is observed in the strain rates between \( \dot \varepsilon \)  = 1.04 × 10−3 and 5.02 × 10−2 s−1 at 1323–1373 K. The synchronous operation of dislocation glide and dynamic recovery is responsible for the tested alloy to exhibit superplastic behavior.

Keywords

NiAl Gage Section Dynamic Recovery Constant Strain Rate Grain Boundary Slide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to acknowledge the projects (05YB31) supported by the scientific research initial foundation for doctor of Shenyang Institute of Aeronautical Engineering.

References

  1. 1.
    Miracle DB (1993) Acta Metall Mater 41:649CrossRefGoogle Scholar
  2. 2.
    Noebe RD, Bowman RR, Nathal MV (1994) NASA technical paper, April:3398Google Scholar
  3. 3.
    Johnson DR, Chen XF, Oliver BF, Noebe RD, Whittenberger JD (1995) Intermetallics 3:99CrossRefGoogle Scholar
  4. 4.
    Johnson DR, Chen XF, Oliver BF, Noebe RD, Whittenberger JD (1995) Intermetallics 3:493CrossRefGoogle Scholar
  5. 5.
    Sakka Y, Matsumoto T, Suzuki TS, Morita K, Kim B-N, Hiraga K, Moriyoshi Y (2003) Adv Eng Mater 5(3):130CrossRefGoogle Scholar
  6. 6.
    Langdon TG (1999) Mater Trans JIM 40(8):716CrossRefGoogle Scholar
  7. 7.
    Oomori T, Yoneyama T, Oikama H (1988) Trans JIM 29:399CrossRefGoogle Scholar
  8. 8.
    Guha S, Baker I, Munroe PR, Michael JR (1992) Mater Sci Eng A 152:2588CrossRefGoogle Scholar
  9. 9.
    Sherby OD, Wadsorth J (1989) Prog Mater ScI 33:169CrossRefGoogle Scholar
  10. 10.
    Jiang DT, Guo JT, Zhou LZ (1998) Mater Sci Eng 255A:154CrossRefGoogle Scholar
  11. 11.
    Griffiths P, Hammond C (1972) Acta Metall 12:935CrossRefGoogle Scholar
  12. 12.
    Hart EW (1967) Acta Metall 15:351CrossRefGoogle Scholar
  13. 13.
    Jia D (2001) Appl Phys Lett 79:611CrossRefGoogle Scholar
  14. 14.
    Lin D, Hu J, Jiang D (2005) Intermetallics 13:343CrossRefGoogle Scholar
  15. 15.
    Lin TL, Shan AD, Li DQ Scripta Metall Mater 31:1455Google Scholar
  16. 16.
    Hu J, Lin D (2004) Mater Lett 58:1297CrossRefGoogle Scholar
  17. 17.
    Kim WY, Hanada S (1997) Mater Sci Eng A 248A:78Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Du Xinghao
    • 1
    • 2
  • Wu Baolin
    • 2
  • C. J. Lee
    • 1
  • J. C. Huang
    • 1
    Email author
  1. 1.Institute of Materials Science and Engineering, Center for Nanoscience and NanotechnologyNational Sun Yat-San UniversityKaohsiungTaiwan, ROC
  2. 2.Department of Materials EngineeringShenyang Institute of Aeronautical EngineeringShenyangP.R. China

Personalised recommendations