Advertisement

Journal of Materials Science

, Volume 42, Issue 16, pp 6510–6514 | Cite as

Rheological behavior of chitosan derivative/cellulose polyblends from N-methylmorpholine N-oxide/H2O solution

  • Xiaofei LiuEmail author
  • Qiang Chen
  • Huanming Pan
Article

Abstract

O-carboxymethylated chitosan (O-CMCh) aqueous solution (I) and Ethyletheramine Chitosan (EACS) aqueous solution (II) were blended with cellulose N-methylmorpholine N-oxide solution, and corresponding polyblends (Polyblend I and II) were obtained. The rheology of this three liquids, (cellulose solution, Polyblend I and II), was investigated in this study. Then the influence on rheology, because of the addition of chitosan derivative, was discussed.

Keywords

Chitosan Shear Rate Apparent Viscosity Fiber Quality Cellulose Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful for the financial support of the National Nature Science Foundation of China through the grant 50173019.

References

  1. 1.
    Liu C, Bai R (2006) J Memb Sci 279(1–2):336CrossRefGoogle Scholar
  2. 2.
    Mortimer SA, Peguy A (1993) In: proceedings of the international conference on cellulose and cellulose Derivatives: physico-chemical aspects and industrial applications. Woodhead Publ Ltd, p 561Google Scholar
  3. 3.
    Idris A, Ismail AF, Gordeyev SA, Shilton SJ (2003) Polym Test 22(3):319CrossRefGoogle Scholar
  4. 4.
    Philipp B (1993) JMS–Pure Appl Chem A30:703Google Scholar
  5. 5.
    Mohanty AK, Wibowo A, Misra M, Drzal LT (2004) Composites Part A: Appl Sci Manufact (Incorporating Composites and Composites Manufacturing) 35(3):363CrossRefGoogle Scholar
  6. 6.
    Yoo S-H, Lee J-S, Park SY, Kim Y-S, Chang P-S, Lee HG (2005) Int J Biol Macromol 35(1–2):27CrossRefGoogle Scholar
  7. 7.
    Kim S-K, Rajapakse N (2005) Carbohyd Polym 62(4):357CrossRefGoogle Scholar
  8. 8.
    Liu XF, Guan YL, Yang DZ, Li Z, Yao KD (2001) J Appl Polym Sci 79:1324CrossRefGoogle Scholar
  9. 9.
    Franklin TJ, Snow GA (1981) Biochem of antimicrobial action. Chapman & Hall, LondonGoogle Scholar
  10. 10.
    Takemono K, Sunamoto J, Akasi M (1989) Polym & Medical Care, Chap. IV, Mita., TokyoGoogle Scholar
  11. 11.
    Hiroshi S (1993) Sensshoku Kogyo 41:177Google Scholar
  12. 12.
    Hiroshi S (1990) Sen’i Gakkaishi 46:564CrossRefGoogle Scholar
  13. 13.
    Hiroshi S (1993) Kinou Zairyo 13:25Google Scholar
  14. 14.
    You Y (1995) Kogyo Zairyo 43:108Google Scholar
  15. 15.
    Hirano S, Nakahira T, Zhang M, Nakagawa M, Yoshikawa M, Midorikawa T (2002) Carbohydr Polym 47(2):121–124CrossRefGoogle Scholar
  16. 16.
    Isogai A, Atalla RH (1991) J Polym Sci Polym Chem Ed 29:113CrossRefGoogle Scholar
  17. 17.
    Choi W-S, Ahn K-J, Lee D-W, Byun M-W, Park H-J (2002) Polym Degrad Stab 78(3):533CrossRefGoogle Scholar
  18. 18.
    Blachot J-F, Chazeau L, Cavaille J-Y (2002) Polymer 43(3):881CrossRefGoogle Scholar
  19. 19.
    Zhuang XP, Liu XF J Appl Polym Sci 102(5):4601Google Scholar
  20. 20.
    Rosenau T, Hofinger A, Potthast A, Kosma P (2003) Polymer 44(20):6153CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Material Science and EngineeringTianjin UniversityTianjinP.R. China

Personalised recommendations