Journal of Materials Science

, Volume 42, Issue 19, pp 8298–8305 | Cite as

The effect of manganese on the microstructure and mechanical properties of zinc–aluminium based ZA-8 alloy

  • Ahmet Türk
  • Mehmet Durman
  • E. Sabri Kayali


In this investigation, the effect of manganese as an alloying element in the range 0.01%–0.53 wt.%, on the hardness, 0.2% yield, tensile and impact strength, and creep properties of a gravity cast Zn–Al based ZA-8 alloy has been investigated. It was found that addition of Mn over the entire range of concentrations has a useful effect on the hardness of the alloy. Also, the 0.2% yield and ultimate tensile strength (UTS) of the samples did not change significantly with Mn additions up to 0.045 wt.% but decreased with a further increase in Mn content. Furthermore, the impact strength of the alloy improved with increasing Mn up to 0.045 wt.% and then decreased gradually with a further increase in Mn content. On the other hand, the creep resistance of the alloy increased continuously with increasing Mn content up to 0.53 wt.% Mn. Metallographic studies showed that addition of Mn resulted in microstructural modifications of the alloy involving the formation of complex intermetallic compound identified as MnAl6. The increase in creep resistance and decrease in tensile and impact strength were thought to have been caused by the changing morphology and amount of the intermetallic.


Impact Strength Creep Strain Creep Resistance Creep Strength Intermetallic Particle 



The authors would like to thank the Scientific and Technical Research Council (TUBITAK) for financial support in this research.


  1. 1.
    Gervais E, Levert H, Bess M (1980) AFS Trans 88:183Google Scholar
  2. 2.
    Gervais E (1987) CIM Bull 80:67Google Scholar
  3. 3.
    Barnhurst RJ (1992) ASM Handbook, ASM International, vol 2. The Materials Information Society, Materials Park, OH, p 527Google Scholar
  4. 4.
    Gervais E, Barnhurst RJ, Loong CA (1985) J Metals 37:43Google Scholar
  5. 5.
    Barnhurst RJ (1988) SAE Trans 97(2):164Google Scholar
  6. 6.
    Gervais E, Lefebvre M, Loong CA (1985) SDCE 13th Int Die Cast Cong and Exp, Paper No G-T85-055, Milwaukee, WI, June 36, 1985, SDCD Inc, River Groove, USAGoogle Scholar
  7. 7.
    Pandey JP, Prasad BK (1998) Metall Mater Trans 29A:245Google Scholar
  8. 8.
    Prasad BK, Patwardhan AK, Yegneswaran AH (1996) Metall Mater Trans 27A:3513CrossRefGoogle Scholar
  9. 9.
    Prasad BK, Patwardhan AK, Yegneswaran AH (1996) Wear 199:142CrossRefGoogle Scholar
  10. 10.
    Kubel EJ (1987) Adv Metal Progress 7:51Google Scholar
  11. 11.
    Risdon TJ, Barnhurst RJ, Mihaichuk WM (1986) SAE Technical Paper, Int Cong and Exp, Detroit, Michigan, Paper No: 860064, Feb. 24–28, 1986Google Scholar
  12. 12.
    Durman M, Murphy S (1988) Z Metallkd 79:243Google Scholar
  13. 13.
    Durman M, Murphy S (1991) Z Metallkd 82:129Google Scholar
  14. 14.
    Türk A, Durman M, Kayali ES (1998) Z Metallkd 89:351Google Scholar
  15. 15.
    Akbulut H, Türk A (2000) Z Metallkd 91:436Google Scholar
  16. 16.
    Durman M (1998) Z Metallkd 89:417Google Scholar
  17. 17.
    Prasad BK (1996) Z Metallkd 87:226Google Scholar
  18. 18.
    Savaskan T, Aydin M, Odabasioglu HA (2001) Mater Sci Tech 17:681CrossRefGoogle Scholar
  19. 19.
    Prasad BK, Yegneswaran AH, Patwardhan AK (1997) Z Metallkd 88:333Google Scholar
  20. 20.
    Savas MA, Altintas S (1992) J Mater Sci 28:1775CrossRefGoogle Scholar
  21. 21.
    Anwar M, Murphy S (2001) J Mater Sci 36:411CrossRefGoogle Scholar
  22. 22.
    Anwar M, Murphy S (2000) Mater Sci Tech 16:321CrossRefGoogle Scholar
  23. 23.
    Savaskan T, Murphy S (1983) Z Metallkd 74:76Google Scholar
  24. 24.
    Prasad BK, Yegneswaran AH, Patwardhan AK (1996) J Mater Sci 31:6317CrossRefGoogle Scholar
  25. 25.
    Prasad BK (2000) Mater Sci Eng A277:95CrossRefGoogle Scholar
  26. 26.
    Türk A, Durman M, Kayali ES (2003) Z Metallkd 94:892CrossRefGoogle Scholar
  27. 27.
    Prasad BK, Yegneswaran AH, Patwardhan AK (1998) J Mater Eng Perf 7:130CrossRefGoogle Scholar
  28. 28.
    Dellis MA, Keustermans JP, Delannay F, Wegria J (1991) J Mater Sci Eng A135:253CrossRefGoogle Scholar
  29. 29.
    Tao L, Dellis MA, Boland F, Delannay F, Wegria J (1995) Composites 26:611CrossRefGoogle Scholar
  30. 30.
    El-Baradie ZM, Waly M, Abd El-Azim AN (2001) J Mater Proc Tech 114:194CrossRefGoogle Scholar
  31. 31.
    Kurnaz SC (2003) Mater Sci Eng A346:108CrossRefGoogle Scholar
  32. 32.
    Muthukumarasamy S, Seshan S (1995) Composites 26:387CrossRefGoogle Scholar
  33. 33.
    Houghton ME, Murray MT (1984) Metals Forum 6:211Google Scholar
  34. 34.
    Türk A, Durman M, Kayali ES (2003) Z Metallkd 94:1001CrossRefGoogle Scholar
  35. 35.
    Li Y, Ngai TL, Xia W, Zhang W (1996) Wear 198:129CrossRefGoogle Scholar
  36. 36.
    Ma T, Chen QD, Li SC, Wang HM (1989) In: Ludema KC (ed) Proc Conf Wear Of Materials, Denver, Colorado, USA, 9–13 April, vol 1, ASME Google Scholar
  37. 37.
    Choudhury P, Das S, Datta BK (2002) J Mater Sci 37:2103CrossRefGoogle Scholar
  38. 38.
    Dominguez C, Moreno Lopez MV, Rios-Jara D (2002) J Mater Sci 37:5123CrossRefGoogle Scholar
  39. 39.
    Dale CH (1988) ASM Handbook, ASM International, vol 15. The Materials Information Society, Materials Park, OH, p 786Google Scholar
  40. 40.
    L’esperance G, Hong D, Gagne M, Barnhurst RJ (1993) Mater Sci Eng A172:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringSakarya UniversityAdapazariTurkey
  2. 2.Department of Metallurgical and Materials EngineeringIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations