Journal of Materials Science

, Volume 42, Issue 16, pp 6600–6606 | Cite as

Hardness and structural correlation for electroless Ni alloy deposits

  • M. PalaniappaEmail author
  • S. K. Seshadri


Electroless nickel (EN) plating has received attention as a hard coating for industrial applications due to its high hardness, uniform thickness as well as excellent corrosion and wear resistance. The electroless Ni–P deposit is a supersaturated alloy in as-deposited state, and can be strengthened by precipitation of nickel phosphide crystallites with suitable heat treatments. However, the hardness of Ni–P films degrades with excessive annealing due to grain coarsening. This is the most severe barrier for electroless Ni–P deposition process from replacing chromium plating in industrial sectors. This problem is addressed in the paper by modifying the conventional electroless Ni–P bath to co-deposit tungsten to increase the hardness of the coating. Structural changes in the coating due to incorporation of tungsten are also highlighted. Deposition is done from an alkaline hypophosphite bath. Deposits with varying tungsten content are synthesized. Chemical analysis shows that tungsten incorporation reduces the phosphorus content in the deposit. Phosphorus content varied from 3 to 7 wt.% depending upon the tungsten incorporation in the deposit which in turn varied between 8 and 18 wt.%. Coatings with high tungsten content possess high hardness when compared to binary Ni–P as well as low tungsten ternary alloy deposits.


Phosphorus Content Hypophosphite Electroless Nickel Sodium Tungstate Electroless Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mallory GO, Hadju JB (1990) Electroless plating. AESF, Orlando, FLGoogle Scholar
  2. 2.
    Riedel W (1991) Electroless nickel plating. Finishing Publishers Ltd, EnglandGoogle Scholar
  3. 3.
    Keong KG, Sha W (2002) Surf Eng 18:329CrossRefGoogle Scholar
  4. 4.
    Shipley CR Jr (1984) Plating Surf Finish 71(6):92Google Scholar
  5. 5.
    Keong KG, Sha W, Malinov S (2004) Mater Sci Eng A 365:212CrossRefGoogle Scholar
  6. 6.
    Sugita K, Ueno N (1984) Mater Sci Eng A 131:111Google Scholar
  7. 7.
    Keong KG, Sha W, Malinov S (2002) J Alloys Compd 334:192CrossRefGoogle Scholar
  8. 8.
    Keong KG, Sha W, Malinov S (2001) Acta Metall Sin (English Letters) 14:419Google Scholar
  9. 9.
    Martyak NM, Wetterer S, Harrison L, Mcneil M, Heu R, Neiderer AA (1993) Plating Surf Finish 80(3):60Google Scholar
  10. 10.
    Hansen M (1965) Constitution of binary alloys. McGraw Hill Book Company, New YorkGoogle Scholar
  11. 11.
    Kanani N (1991) Trans IMF 70(1):14CrossRefGoogle Scholar
  12. 12.
    Staia MH, Puchi ES, Castillo EJ, Lewis DB, Hintermann HE (1996) Surf Coatings Technol 86/87:598CrossRefGoogle Scholar
  13. 13.
    Chen CJ, Lin KL (1999) J Electrochem Soc 146(1):137CrossRefGoogle Scholar
  14. 14.
    Armyanov S, Steen O (1996) J Electrochem Soc 143(11):3692CrossRefGoogle Scholar
  15. 15.
    Schlesinger M, Meng X (1990) J Electrochem Soc 137(6):1858CrossRefGoogle Scholar
  16. 16.
    Zhang BW, Hu WY, Qu XY (1996) Mater Characterisation 37:119CrossRefGoogle Scholar
  17. 17.
    Balaraju JN, Millath Jahan S, Jain A, Rajam KS (2006) J Alloys Compd. DOI: 10.1016/j.jallcom.2006.07.045CrossRefGoogle Scholar
  18. 18.
    Hu Y-J, Wang T-X, Meng J-L, Rao Q-Y (2006) Surf Coatings Technol 201:988CrossRefGoogle Scholar
  19. 19.
    Martyak NM, Drake K (2000) J Alloys Compd 312:30CrossRefGoogle Scholar
  20. 20.
    Sankaranarayanan TSN, Selvakumar S, Stephen A (2003) Surf Coatings Technol 172:298CrossRefGoogle Scholar
  21. 21.
    Yu H-S, Luo S-F, Wang Y-R (2001) Surf Coatings Technol 148:143CrossRefGoogle Scholar
  22. 22.
    Tsai Y-Y, Wu F-B, Chen Y-I, Peng P-J, Duh J-G, Tsai S-Y (2001) Surf Coatings Technol 146–147:502CrossRefGoogle Scholar
  23. 23.
    Gad MR, El-Magd A (2001) Met Finish 99(2):77CrossRefGoogle Scholar
  24. 24.
    Warren BE (1969) X-ray diffraction. Addison-Weseley Publishing Company, Reading, MAGoogle Scholar
  25. 25.
    Szasz A, Fabian DJ, Paal Z, Kojnok J (1988) J Non-Cryst Solids 103:21CrossRefGoogle Scholar
  26. 26.
    Allen RM, Vander Sande JB (1982) Scr Metallur 16:1161CrossRefGoogle Scholar
  27. 27.
    Xiang Y, Hu W, Liu X, Luo S (2001) Plating Surf Finishing 88(6):96Google Scholar
  28. 28.
    American Society for Materials (1991) ASM handbook, volume 3 “Alloy phase diagrams”. American Society for Materials, Material Park, OHGoogle Scholar
  29. 29.
    Kumar PS, Nair PK (1996) J Mater Process Technol 56(1–4):511CrossRefGoogle Scholar
  30. 30.
    Keong KG, Sha W, Malinov S (2002) J Mater Sci 37:4445CrossRefGoogle Scholar
  31. 31.
    Baudrand D, Bengston J (1995) Met Finishing 93(9):55CrossRefGoogle Scholar
  32. 32.
    Barker D (1993) Trans Inst Met Finishing 71(3):121CrossRefGoogle Scholar
  33. 33.
    Lin C-H, Duh J-G (2004) Surf Coatings Technol 188–189:495CrossRefGoogle Scholar
  34. 34.
    Wu F-B, Chen Y-I, Peng P-J, Tsai Y-Y, Duh J-G (2002) Surf Coatings Technol 150:232CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia
  2. 2.NFTDCHyderabadIndia

Personalised recommendations