Advertisement

Journal of Materials Science

, Volume 42, Issue 16, pp 6689–6695 | Cite as

Selective synthesis of brookite, anatase and rutile nanoparticles: thermolysis of TiCl4 in aqueous nitric acid

  • Sophie Cassaignon
  • Magali Koelsch
  • Jean-Pierre Jolivet
Article

Abstract

The three polymorphs of titania (anatase, rutile and brookite) have been obtained as nanoparticles selectively and with well definite morphologies (platelets of brookite, rods of rutile) by thermohydrolysis of TiCl4 in concentrated aqueous nitric acid. The selectivity of the synthesis depends strongly on the acidity of the medium. The presence of concentrated nitrate ions seems to be the determining factor for the formation of brookite and its stabilization against recrystallization.

Keywords

TiO2 Rutile TiCl4 Thermolysis Brookite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors are grateful to Dr Fabienne Warmont (CRMP, Université P. et M. Curie-Paris6), Dr. Dominique Jalabert (CME, Université d’Orléans) for the TEM and HRTEM measurements and to Dr François Ribot for fruitful discussions.

References

  1. 1.
    Ohzuku T, Hirai T (1982) Electrochim Acta 27:1263CrossRefGoogle Scholar
  2. 2.
    Fuyuki T, Kobayashi T, Matsunami H (1988) J Electrochem Soc 135:248CrossRefGoogle Scholar
  3. 3.
    Kavan L, Kratochvilova K, Grätzel M (1995) J Electroanal Chem 394:93CrossRefGoogle Scholar
  4. 4.
    Braun JH, Baidins A, Marganski RE (1992) Prog Org Coat 20:105CrossRefGoogle Scholar
  5. 5.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefGoogle Scholar
  6. 6.
    Voltz HG, Kämpf G, Fitzky G (1973) Prog Org Coat 2:233Google Scholar
  7. 7.
    Serpone N, Pelizzeti E (1989) In: Photocatalysis: Fundamentals and applications. Wiley, London, UKGoogle Scholar
  8. 8.
    O’regan B, Moser J, Andersen M, Grätzel M (1990) J Phys Chem 94:8720CrossRefGoogle Scholar
  9. 9.
    O’regan B, Grätzel M (1991) Nature 353:737CrossRefGoogle Scholar
  10. 10.
    Van De Krol R, Goossens A, Schoonman J (1997) J Electrochem Soc 144:1723CrossRefGoogle Scholar
  11. 11.
    Koelsch M, Cassaignon S, Ta Thanh Minh C, Guillemoles J-F, Jolivet J-P (2004) Thin Solid Films 451–452:86CrossRefGoogle Scholar
  12. 12.
    Koelsch M, Cassaignon S, Guillemoles J-F, Jolivet J-P (2002) Thin Solid Films 403–404:312CrossRefGoogle Scholar
  13. 13.
    Cassaignon S, Koelsch M, Guillemoles J-F, Jolivet J-P (2004) In: Hoffman W, Bal JL Ossenbrink H, Palz W, Helm P (eds) Proceedings of the 19th Eur. Photovoltaic Solar Energy Conf. 2004, (Paris, France), p 305Google Scholar
  14. 14.
    Moritz T, Reiss J, Diesner K, Su D, Chemseddine A (1997) J Phys Chem B 101:8052CrossRefGoogle Scholar
  15. 15.
    Ichinose H, Terasaki M, Katsuki H (1996) J Ceram Soc Jpn 104:715Google Scholar
  16. 16.
    Yamamoto S, Nishikura H, Terao Y (1988) Crystalline titania sol and its manufacture. Patent JP 1988/63017221Google Scholar
  17. 17.
    Matijevic E, Budnick M, Meites L (1977) J Colloid Interface Sci 61:302CrossRefGoogle Scholar
  18. 18.
    Koelsch M, Cassaignon S, Jolivet J-P (2004) In: Kelder EM, Leite ER, Tarascon J-M, Chiang Y-M (eds) Proceedings of the Mater. Res. Soc. Symp. Proc. 822, Warrendale, PAGoogle Scholar
  19. 19.
    Pottier A, Cassaignon S, Chaneac C, Tronc E, Jolivet J-P (2003) J Mater Chem 13:877CrossRefGoogle Scholar
  20. 20.
    Iwasaki M, Hara M, Ito S (1998) J Mater Sci Lett 17:1769CrossRefGoogle Scholar
  21. 21.
    Allan WB and Bousquet LG (1939) Titanium dioxide. Patent US 1939/2182420Google Scholar
  22. 22.
    Chemseddine A, Moritz T (1999) Eur J Inorg Chem 1999:235CrossRefGoogle Scholar
  23. 23.
    Bischoff BL, Anderson MA (1995) Chem Mater 7:1772CrossRefGoogle Scholar
  24. 24.
    Seo D, Lee J, Kim H (2001) J Cryst Growth 233:298CrossRefGoogle Scholar
  25. 25.
    Li Y, Fan Y, Chen Y (2002) J Mater Chem 12:1387CrossRefGoogle Scholar
  26. 26.
    Yin H, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakata T, Yanagida S (2001) J Mater Chem 11:1694CrossRefGoogle Scholar
  27. 27.
    Cheng H, Ma J, Zhao Z, Qi L (1995) Chem Mater 7:663CrossRefGoogle Scholar
  28. 28.
    Aruna ST, Tirosh S, Zaban A (2000) J Mater Chem 10:2388CrossRefGoogle Scholar
  29. 29.
    Keesmann I (1966) Z Anorg Allg Chem 346:30CrossRefGoogle Scholar
  30. 30.
    Mistuhashi T, Watanabe M (1978) Mineral J 9:236CrossRefGoogle Scholar
  31. 31.
    Nagase T, Ebina T, Iwasaki T, Hayashi H, Onodera Y, Chatterjee M (1999) Chem Lett 28:911CrossRefGoogle Scholar
  32. 32.
    Zheng Y, Shi E, Cui S, Li W, Hu X (2000) J Am Ceram Soc 83:2634CrossRefGoogle Scholar
  33. 33.
    Kominami H, Kohno M, Kera Y (2000) J Mater Chem 10:1151CrossRefGoogle Scholar
  34. 34.
    Pottier A, Chaneac C, Tronc E, Mazerolles L, Jolivet J-P (2001) J Mater Chem 11:1116CrossRefGoogle Scholar
  35. 35.
    Bekkerman LI, Dobrovol’skii IP, Ivakin AA, (1976) Russ J Inorg Chem 21:418Google Scholar
  36. 36.
    Lee JH, Yang YS (2006) J Mater Sci 41:557CrossRefGoogle Scholar
  37. 37.
    Charlot G (1961) In: Les méthodes de la chimie analytique, Masson & Cie, Paris, FranceGoogle Scholar
  38. 38.
    Weissler A (1945) Ind Eng Chem Anal Ed 17:695Google Scholar
  39. 39.
    Langford JI, Wilson AJC (1978) J Appl Crystallogr 11:102CrossRefGoogle Scholar
  40. 40.
    Nabivanets BI (1962) Russ J Inorg Chem 7:412Google Scholar
  41. 41.
    Golub AM, Tishchenko AF, Kokot IF, Kalinichenko AM (1971) Ukr Khim. Zh. (Russ. Ed.) 34:533Google Scholar
  42. 42.
    Jolivet J-P (2000) In: Metal oxide chemistry and synthesis: from solution to solid state. Wiley, Chichester, UKGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sophie Cassaignon
    • 1
  • Magali Koelsch
    • 1
  • Jean-Pierre Jolivet
    • 1
  1. 1.Chimie de la Matière Condensée de ParisUniversité Pierre et Marie Curie-Paris6, CNRS UMR 7574ParisFrance

Personalised recommendations