Journal of Materials Science

, Volume 41, Issue 6, pp 1865–1871 | Cite as

Influence of the polymer dielectric characteristics on the performance of a quaterthiophene organic field-effect transistor

  • K. N. Narayanan Unni
  • Sylvie Dabos-Seignon
  • Jean-Michel Nunzi


Organic field-effect transistors were fabricated with quaterthiophene as the active material and various polymeric dielectrics as the gate insulator. The conduction parameters such as mobility, threshold voltage, subthreshold swing, the maximum density of surface states etc. were found out. The performances of the devices were compared with respect to the dielectric constant, thickness and surface morphology of the gate insulator and the leakage current through the gate. Out of the three dielectrics investigated viz. parylene-C, cyanoethylpullulan and poly(methylmethacrylate); parylene-C was found to be best suited for applications in organic FETs.


  1. 1.
    C. D. DIMITRAKOPOULOS and P. R. L. MALENFANT, Adv. Mater. 14 (2002) 99.CrossRefGoogle Scholar
  2. 2.
    V. Y. BUTKO, X. CHI, D. V. LANG and A. P. RAMIREZ, Appl. Phys. Lett. 83 (2003) 4773.CrossRefGoogle Scholar
  3. 3.
    H. KLAUK, M. HALIK, U. ZSCHIESCHANG, G. SCHMID, W. RADLIK and W. WEBER, J. Appl. Phys. 92 (2002) 5259.CrossRefGoogle Scholar
  4. 4.
    H. SIRRINGHAUS, N. TESLER and R. H. FRIEND, Science 280 (1998) 1741.CrossRefGoogle Scholar
  5. 5.
    H. SIRRINGHAUS, P. J. BROWN, R. H. FRIEND, M. M. NIELSEN, K. BECHGAARD, B. M. W. LANGEVELD-VOIS, A. J. H. SPIERING, R. A. JANSSEN, E. W. MEIJER, P. T. HERWIG and D. M. DE LEEUW, Nature 401 (1999) 685.CrossRefGoogle Scholar
  6. 6.
    J. COLLET, O. THARAUD, C. LEGRAND, A. CHAPOTON and D. VUILLAUME, Mater. Res. Soc. Symp. Proc. 488 (1998) 407.Google Scholar
  7. 7.
    R. PARASHKOV, E. BECKER, G. GINEV, T. RIEDL, H.-H. JOHANNES and W. KOWALSKY, J. Appl. Phys. 95 (2004) 1594.CrossRefGoogle Scholar
  8. 8.
    H. E. KATZ, A. DODABALAPUR and Z. BAO, in “Handbook of oligo and polythiophenes'' edited by D. FICHOU (Wiley VCH, Weinheim, 1999) p. 459ff.Google Scholar
  9. 9.
    F. GARNIER, Chem. Phys. 227 (1998) 253.CrossRefGoogle Scholar
  10. 10.
    S. TRABATTONI, S. LAERA, R. MENA, A. PAPAGANI and A. SASSELLA, J Mater. Chem. 14 (2004) 171.CrossRefGoogle Scholar
  11. 11.
    W. A. SCHOONVELD, R. W. STOK, J. W. WEIJTMANS, J. VRIJMOETH, J. WILDEMAN and T. M. KLAPWIJK, Synth. Met. 84 (1997) 583.Google Scholar
  12. 12.
    G. HOROWITZ, Adv. Mater. 10 (1998) 365.Google Scholar
  13. 13.
    G. HOROWITZ, R. HAJLAOUI, H. BOUCHRIHA, R. BOURGUIGA and M. HAJLAOUI, ibid. 10 (1998) 923.Google Scholar
  14. 14.
    X. PENG, G. HOROWITZ, D. FICHOU and F. GARNIER, Appl. Phys. Lett. 57 (1990) 2013.CrossRefGoogle Scholar
  15. 15.
    A. ROLLAND, J. RICHARD, J.-P. KLEIDER and D. MENCARAGLIA, J. Electrochem. Soc. 140 (1993) 3679Google Scholar
  16. 16.
    C. H. JONDA, A. B. R. MAYER, U. STOLZ, A. ELSCHNER and A. KARBACH, J. Mater. Sci. 35 (2000) 5645.CrossRefGoogle Scholar
  17. 17.
    J. VERES, S. D. OGIER, S. W. LEEMING, D. C. CUPERTINO and S. M. KHAFFAF, Adv. Funct. Mater. 13 (2003) 199.CrossRefGoogle Scholar
  18. 18.
    F. GARNIER, G. HOROWITZ, X. PENG and D. FICHOU, Adv. Mater. 2 (1990) 592.Google Scholar
  19. 19.
    C. D. DIMITRAKOPOULOS, S. PURUSHOTHAMAN, J. KYMISSIS, A. CALLEGARI and J. M. SHAW, Science 283 (1999) 822.CrossRefGoogle Scholar
  20. 20.
    R. HAJLAOUI, G. HOROWITZ, F. GARNIER, A. A. BROUCHET, L. LAIGRE, A. EL KASSMI, F. DEMANZE and F. KOUKI, Adv. Mater. 9 (1997) 389.Google Scholar
  21. 21.
    H. E. KATZ, L. TORSI and A. DODABALAPUR, Chem. Mater. 7 (1995) 2235.Google Scholar
  22. 22.
    C. VIDELOT, J. ACKERMANN, A. E. KASSMI and P. RAYNAL, Thin Solid Films 403/404 (2002) 380.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • K. N. Narayanan Unni
    • 1
  • Sylvie Dabos-Seignon
    • 1
  • Jean-Michel Nunzi
    • 1
  1. 1.Laboratoire des Proprietés Optiques des Matériaux et ApplicationsUniversité AngersFrance

Personalised recommendations