Advertisement

Journal of Materials Science

, Volume 41, Issue 8, pp 2237–2241 | Cite as

Influence of the annealing temperature on violet emission of ZnO films obtained by oxidation of Zn film on quartz glass

  • X. M. Fan
  • J. S. Lian
  • Z. X. Guo
  • L. Zhao
  • Q. Jiang
Article

Abstract

The photoluminescence (PL) emission properties of ZnO films obtained on quartz glass substrate by the oxidation of Zn films with the oxygen pressure of 50Pa at temperature of 773 K~973 K were studied. The strong single violet emission centering on 424 nm (or 2.90 eV) without any accompanying deep-level emission and UV emission was observed in the PL spectra of the ZnO films at room temperature. The intensity of violet emission increased with increasing annealing temperature in the range of 773 K~873 K and decreased with increasing annealing temperature in the range of 873 K~973 K. These violet emission bands are attributed to the electron transition from interstitial zinc (Zni) level (2.91 eV) to the valence band.

Keywords

Oxidation Polymer Zinc Valence Band Glass Substrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. I. BERGER, Semiconductor Materials (CRC Press, New York, 1997).Google Scholar
  2. 2.
    A. S. YAMAMOTO, K. S. MIYAJIMA and T. GOTO, J. Appl. Phys. 90 (2001) 4973.CrossRefGoogle Scholar
  3. 3.
    S. BETHKE, H. PAN and B. W. WESSEIS, Appl. Phys. Lett. 52 (1988) 138.CrossRefGoogle Scholar
  4. 4.
    Y. CHEN, D. M. BAGNALL, H. J. KOH, K. T. PARK, K. HIRAGA, Z. ZHU and T. YAO, J. Appl. Phys. 84 (1998) 3912.Google Scholar
  5. 5.
    R. DINGLE, Phys. Rev. Lett. 23 (1969) 579.Google Scholar
  6. 6.
    B. S. PIERCE and R. L. HENGEHOLD, J. Appl. Phys. 47 (1976) 644.CrossRefGoogle Scholar
  7. 7.
    W. I. PARK and G. C. YI, J. Electron. Mater. 30 (2001) L32.Google Scholar
  8. 8.
    H. J. KO, Y. F. CHEN, Z. ZHU, T. YAO, I. KOBAYASHI and H. UCHIKI, Appl. Phys. Lett. 76 (2000) 1905.Google Scholar
  9. 9.
    K. K. KIM, J. H. SONG, H. J. JUNG, W. K. CHOI, S. J. PARK and J. H. SONG, J. Appl. Phys. 87 (2000) 3573.Google Scholar
  10. 10.
    J. A.SANS, A. SEGURA, M. MOLLAR and B. MAR. Thin Solid Films 453-454 (2004) 251.Google Scholar
  11. 11.
    S. CHO, J. MA, Y. KIM, Y. SUN, G. K. L. WONG and J. B. KETTERSON, Appl. Phys. Lett. 75 (1999) 2761.Google Scholar
  12. 12.
    S. H. JEONG, B. S. KIM and B. T. LEE, ibid. 82 (2003) 2625.Google Scholar
  13. 13.
    Q. P. WANG, D. H. ZANG, Z. Y. XUE and X. T. HAO, Appl. Surf. Sci. 201 (2002) 123.CrossRefGoogle Scholar
  14. 14.
    B. J. JIN, S. IM and S. Y. LEE, Thin Solid Films 366 (2000) 107.Google Scholar
  15. 15.
    B. J. JIN, H. S. WOO, S. IM, S. H. BAE and S. Y. LEE, Appl. Surf. Sci. 169-170 (2001) 521.CrossRefGoogle Scholar
  16. 16.
    X. M. FAN, J. S. LIAN, Z. X. GUO and H. J. LU, ibid. 239 (2005) 176.Google Scholar
  17. 17.
    Y. M. SUN, Ph.D. thesis, University of Science and Technology of China, July, 2000.Google Scholar
  18. 18.
    Y. G. WANG, S. P. LAU, H. W. LEE and S. F. YU, J. Appl. Phys. 94 (2003) 354.Google Scholar
  19. 19.
    J. D. YE, S. L. GU, S. M. ZHU, T. CHEN and W. L. LIU, J. Vac. Sci. Technol. A, 21 (2003) 979.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • X. M. Fan
    • 1
    • 2
  • J. S. Lian
    • 1
  • Z. X. Guo
    • 1
  • L. Zhao
    • 1
  • Q. Jiang
    • 1
  1. 1.The Key Lab of Automobile Materials, Ministry of Education, College of Materials Science and EngineeringJilin UniversityChangchunChina
  2. 2.College of Materials EngineeringSouthwest Jiaotong UniversityChengdu, SichuanChina

Personalised recommendations