Advertisement

Journal of Materials Science

, Volume 41, Issue 8, pp 2243–2248 | Cite as

A general combustion approach to multipod ZnO and its characterization

  • Yu-Na Zhao
  • Mao-Sheng Cao
  • Jin-Gang Li
  • Yu-Jin Chen
Article

Abstract

By a general approach of combustion oxidation at high temperature, multipod ZnO was synthesized without any catalysts or additives. The morphology and optical properties of the multipod ZnO were studied in detail. The growth mechanism was discussed preliminarily. An ultraviolet (UV) emission peak at 374 nm and a broad green emission peak centered at 502 nm are observed in photoluminescence spectrum of the multipod ZnO. The multipod structure exhibits significant enhancement of UV emission intensity and green light emission intensity compared with the tetrapod structure, which are attributed to less structural defects and increased surface area respectively. Furthermore, compared with nano-particle and micro-particle ZnO, UV emission peak of multipod ZnO appears a slight blue shift. Due to slim tips of the legs, quantum size effect cause a slight blue shift of UV emission peak. We believe that these optical properties of the multipod structure have extensive applications in nanoscale optical devices.

Keywords

Emission Intensity Emission Peak Green Emission Increase Surface Area Quantum Size Effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. H. HUANG, Y. WU, H. FEICK, N. TRAN, E. WEBER and P. YANG, Adv. Mater. 13 (2001) 113.Google Scholar
  2. 2.
    Q. WAN, K. YU and C. L. LIN, Appl. Phys. Lett. 83 (2003) 2253.Google Scholar
  3. 3.
    Z. CHEN, Z. W. SHAN, M. S. CAO, L. LU and S. X. MAO, Nanotechnology 15 (2004) 365.CrossRefGoogle Scholar
  4. 4.
    Z. WANG, X. F. QIAN, J. YIN and Z. K. ZHU, Langmuir. 20 (2004) 3441.Google Scholar
  5. 5.
    Y. LI, G. W. MENG, L. D. ZHANG and F. PHILLIPP, Appl. Phys. Lett 76(2000) 2011.Google Scholar
  6. 6.
    Y. C. KONG, D. P. YU, B. ZHANG, W. FENG and S. Q. FENG, ibid. 78 (2001) 407.Google Scholar
  7. 7.
    Y. W. WANG, L. D. ZHANG, G. Z. WANG, Z. Q. CHU and C. H. LIANG, J. Cyst. Growth 234 (2002) 171.Google Scholar
  8. 8.
    B. D. BAO, Y. F. CHEN and N. WANG, Appl. Phys. Lett. 81 (2002) 757.Google Scholar
  9. 9.
    S. H. KO. PARK and Y. EUILEE,  J. Mater. Sci. 39 (2004) 2195.Google Scholar
  10. 10.
    H. S. LEE, J. Y. LEE, T. W. KIM, D. W. KIM and W. J. CHO, ibid. 39 (2004) 3525.Google Scholar
  11. 11.
    Y. DAI, Y. ZHANG, Q. K. LI and C. W. NAN, Chem. Phys. Lett. 358 (2002) 83.Google Scholar
  12. 12.
    C. XU, G. XU, Y. LIU and G. ZHANG, Solid State Commun. 122 (2002) 175.Google Scholar
  13. 13.
    L. GUO, J. X. CHENG, X. Y. LI, S. H. YANG, C. L. YANG and J. N. WANG, Mater. Sci. Eng. C. 16 (2001) 123.CrossRefGoogle Scholar
  14. 14.
    R. YANG, Y. DING and Z. L. WANG, Nano Lett. 4 (2004) 1309.Google Scholar
  15. 15.
    B. P. ZHANG, N. T. BINH, H. WAKATSUKI, Y. KASHIWABA and K. HAGA, Nanotechnology 15 (2004) S382.Google Scholar
  16. 16.
    X. D. BAI, P. X. GAO and Z. L. WANG, Appl. Phys. Lett. 82 (2003) 4806.CrossRefGoogle Scholar
  17. 17.
    Y. J. CHEN, M. S. CAO, T. H. WANG and Q. WAN, ibid. 84 (2004) 2415.Google Scholar
  18. 18.
    H. CAO, J. Y. XU, D. Z. ZHANG, S. H. CHANG, S. T. HO and E. W. SEELING, Phys. Rev. Lett. 84 (2000) 5584.CrossRefGoogle Scholar
  19. 19.
    J. A. SCHWARZ and O. I. CONTESCU, Surface of Nanoparticles and Porous Materials, Marcel Dekker, New York, 1999.Google Scholar
  20. 20.
    A. B. DJUR, Y. H. LEUNG, W. C. H. CHOY, K. W. CHEAH and W. K. CHAN, Appl. Phys. Lett. 84 (2004) 2635.Google Scholar
  21. 21.
    X. SUN, X. CHEN and Y. D. LI. J. Cyst. Growth. 244 (2002) 218.Google Scholar
  22. 22.
    T. GAO, Y. HUANG and T. WANG, J. Phys.: Condens. Matt. 16 (2004) 1115.Google Scholar
  23. 23.
    Y. H. LEUNGA, A. B. DJURIS, W. C. H. CHOY, M. H. XIE, J. GAO, K. Y. K MAN and W. K. CHAN, J. Cyst. Growth. 274 (2005) 430.Google Scholar
  24. 24.
    S. TAKEUCHI, H. IWANAGA and M. FUJII, Philos. Mag. A. 69 (1994) 1125.Google Scholar
  25. 25.
    Y.C. KONG, D. P. YU, B. ZHANG, W. FANG and S. Q. FENG, Appl. Phys. Lett. 78 (2001) 407.Google Scholar
  26. 26.
    D. M. BAGNALL, Y. F. CHEN, M. Y. SHEN, Z. ZHU and T. YAO, J. Cryst. Growth 185 (1998) 605.CrossRefGoogle Scholar
  27. 27.
    K. VANHEUSDEN, W. L. WARREN, C. H. SEAGER, D. K. TALLANT and B. E. GNADE, J. Appl. Phys. 79 (1996) 7983.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Yu-Na Zhao
    • 1
  • Mao-Sheng Cao
    • 1
  • Jin-Gang Li
    • 1
  • Yu-Jin Chen
    • 2
  1. 1.Department of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Institute of Physics, Chinese Academy of SciencesBeijingChina

Personalised recommendations