Porous methacrylate tissue engineering scaffolds: using carbon dioxide to control porosity and interconnectivity

  • John J. A. Barry
  • Marta M. C. G. Silva
  • Sarah H. Cartmell
  • Robert E. Guldberg
  • Colin A. Scotchford
  • Steven M. HowdleEmail author


Porous scaffold structures are used in tissue engineering to provide structural guidance for regenerating tissues. The use of carbon dioxide (CO2) to create such scaffolds has received some attention in the past but many researchers believe that although CO2 processing of polymers can lead to porous scaffolds there is limited interconnectivity between the pores. In this study, highly porous (greater than 85%) and well interconnected scaffolds were obtained in which the size, distribution and number of pores could be controlled. This control was achieved by altering the rate of venting from polymer discs saturated with CO2 under modest temperature and pressure. The polymer used is a blend of poly (ethyl methacrylate) and tetrahydrofurfuryl methacrylate (PEMA/THFMA). This polymer system has shown promise for potential applications in cartilage repair.


Foam Pore Size Distribution Open Porosity Cartilage Repair Average Pore Size 


  1. 1.
    G. CHEN, T. USHIDA and T. TATEISHI, Macromol. Biosci. 2 (2002) 67.CrossRefGoogle Scholar
  2. 2.
    K. F. LEONG, C. M. CHEAH and C. K. CHUA, Biomaterials 24 (2003) 2363.CrossRefGoogle Scholar
  3. 3.
    Q. HUANG, D. PAUL and B. SEIBIG, Membrane Technol. 140 (2001) 6.CrossRefGoogle Scholar
  4. 4.
    R. A. QUIRK, R. M. FRANCE, K. M. SHAKESHEFF and S. M. HOWDLE, Curr. Opin. Solid State Mater. Sci. 8 (2004) 313.CrossRefGoogle Scholar
  5. 5.
    M. WEBER, L. RUSSELL and P. DEBENEDETTI, J. Supercritical Fluids 23 (2002) 65.CrossRefGoogle Scholar
  6. 6.
    M. A. MCHUGH and V. J. KRUKONIS, Supercritical Fluid Extraction: Principles and Practice (Butterworth-Heinemann, Boston, 1994), p 512.Google Scholar
  7. 7.
    A. I. COOPER, Adv. Mater. 13 (2001) 1.CrossRefGoogle Scholar
  8. 8.
    H. M. WOODS, M. M. C. G. SILVA, C. NOUVEL, K. M. SHAKESHEFF and S. M. HOWDLE, J. Mater. Chem. 14 (2004) 1663.CrossRefGoogle Scholar
  9. 9.
    D. J. MOONEY, D. F. BALDWIN, N. P. SUH, J. P. VACANTI and R. LANGER, Biomaterials 17 (1996) 1417.CrossRefGoogle Scholar
  10. 10.
    S. M. HOWDLE, et al. Chem. Commun. 1 (2001) 109.CrossRefGoogle Scholar
  11. 11.
    S. G. KAZARIAN, Polym. Sci. 42 (2000).Google Scholar
  12. 12.
    D. L. TOMASKO, et al. Ind. Eng. Chem. 42 (2004) 6431.CrossRefGoogle Scholar
  13. 13.
    L. D. HARRIS, B.-S. KIM and D. J. MOONEY, J. Biomed. Mater. Res. 42 (1998) 396.CrossRefGoogle Scholar
  14. 14.
    S. K. GOEL and E. J. BECKMAN, Polym. Eng. Sci. 34 (1994) 1137.CrossRefGoogle Scholar
  15. 15.
    Polym. Eng. Sci.., 34 (1994) 1148.CrossRefGoogle Scholar
  16. 16.
    C. B. PARK, D. F. BALDWIN and N. P. SUH, Polym. Eng. Sci.., 35 (1995) 432.CrossRefGoogle Scholar
  17. 17.
    S. DOWNES, R. S. ARCHER, M. V. KAYSER, M. P. PATEL and M. BRADEN, J. Mater. Sci.: Mater. Med. (1994) 88.Google Scholar
  18. 18.
    N. REISSIS, S. DOWNES, M. KAYSER, D. LEE and G. A. BENTLEY, J. Mater. Sci.: Mater. Med., 5 (1994) 793.Google Scholar
  19. 19.
    J. Mater. Sci.: Mater. Med., 5 (1994) 402.Google Scholar
  20. 20.
    R. M. SAWTELL, S. DOWNES and M. V. KAYSER, J. Mater. Sci.: Mater. Med., 6 (1995) 676.Google Scholar
  21. 21.
    R. M. SAWTELL, M. V. KAYSER and S. DOWNES, Cells Mater. 5 (1995) 63.Google Scholar
  22. 22.
    R. M. WYRE and S. DOWNES, Biomaterials 21 (2000) 335.CrossRefGoogle Scholar
  23. 23.
    J. J. A. BARRY, H. S. GIDDA, C. A. SCOTCHFORD and S. M. HOWDLE, Biomaterials. 25 (2004) 3559.CrossRefGoogle Scholar
  24. 24.
    C. D. MCFARLAND, et al., J. Biomed. Mater. Res. 44 (1999) 1.CrossRefGoogle Scholar
  25. 25.
    A. TAMPIERI, G. CELOTTI, S. SPRIO, A. DELCOGLIANO and S. FRANZESE, Biomaterials 22 (2001) 1365.CrossRefGoogle Scholar
  26. 26.
    Y. DAUSSE, et al., Osteoarthritis Cartilage 11 (2003) 16.CrossRefGoogle Scholar
  27. 27.
    T. HILDEBRAND and P. RUEGSEGGER, J. Microsc. 185 (1997) 67.CrossRefGoogle Scholar
  28. 28.
    T. HILDEBRAND, A. LAIB, R. MULLER, J. DEQUEKER and P. RUEGSEGGER, J. Bone and Mineral Res. 14 (1999) 1167.CrossRefGoogle Scholar
  29. 29.
    A. I. COOPER, J. Mater. Chem. 10 (2000) 207.CrossRefGoogle Scholar
  30. 30.
    K. A. ARORA, A. J. LESSER and T. J. MCCARTHY, Macromolecules 31 (1998) 4614.CrossRefGoogle Scholar
  31. 31.
    S. H. ALAVI, B. K. GOGOI, M. KHAN, B. J. BOWMAN and S. S. H. RIZVI, Food Res. Int. 32 (1999) 107.CrossRefGoogle Scholar
  32. 32.
    M. C. G. S. SILVA, K. M. SHAKESHEFF and S. M. HOWDLE, Polymer scaffolds for cartilage engineering using supercritical fluids. in UKSB Conf. Proc. (Northern Ireland, 2003).Google Scholar
  33. 33.
    L. N. NIKITIN, et al., Macromol 35 (2002) 934.CrossRefGoogle Scholar
  34. 34.
    C. A. LEóN Y LEóN, Adv. Colloid and Interface Sci. 76-77 (1998) 341.CrossRefGoogle Scholar
  35. 35.
    I. V. YANNAS, E. LEE, D. P. ORGILL, E. M. SKRABUT and G. F. MURPHY, Proc. Natl. Acad. Sci. 86 (1989) p. 933.CrossRefGoogle Scholar
  36. 36.
    B. D. BOYAN, T. W. HUMBERT, D. D. DEAN and Z. SCHWARTZ, Biomater. 17 (1996) 137.CrossRefGoogle Scholar
  37. 37.
    F. A. L. DULLIEN, “Porous Media: Fluid Transport and Pore Structure” (Academic Press, San Diego, 1992), p. 574.Google Scholar
  38. 38.
    P. W. HUI, P. C. LEUNG and A. SHER, J. Biomech. 29 (1996) 123.CrossRefGoogle Scholar
  39. 39.
    M. J. GRIMM and J. L. WILLIAMS, J. Biomech.. 30 (1997) 743.CrossRefGoogle Scholar
  40. 40.
    J. SOHIER, R. E. HAAN, K. DE GROOT and J. M. BEZEMER, J. Control. Release 87 (2003) 57.CrossRefGoogle Scholar
  41. 41.
    S. LI, J. R. DE WIJN, J. LI, P. LAYROLLE and K. DE GROOT, Tissue Eng. 9 (2003) 535.CrossRefGoogle Scholar
  42. 42.
    G. BAROUD, J. Z. WU, M. BOHNER, S. SPONAGEL and T. STEFFEN, Med. Eng. Phys. 25 (2003) 283.CrossRefGoogle Scholar
  43. 43.
    L. J. GIBSON and M. F. ASHBY, “Cellular Solids: Structure and Properties” (Cambridge University Press, Cambridge, 1997).CrossRefGoogle Scholar
  44. 44.
    A. S. P. LIN, T. H. BARROWS, S. H. CARTMELL and R. E. Guldberg, Biomater. 24 (2003) 481.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • John J. A. Barry
    • 1
  • Marta M. C. G. Silva
    • 1
  • Sarah H. Cartmell
    • 2
  • Robert E. Guldberg
    • 2
  • Colin A. Scotchford
    • 3
    • 4
  • Steven M. Howdle
    • 1
    Email author
  1. 1.School of ChemistryUniversity of NottinghamUniversity ParkUK
  2. 2.Orthopaedic Bioengineering Laboratory, Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.School of Biomedical SciencesUniversity of Nottingham Medical School, Queen’s Medical CentreNottinghamUK
  4. 4.Bioengineering Section, School of Mechanical, Materials, Manufacturing Engineering and ManagementUniversity of NottinghamNottinghamUK

Personalised recommendations