Advertisement

Journal of Materials Science

, Volume 41, Issue 13, pp 4191–4195 | Cite as

Formation characteristics of an aluminum hydroxide fiber by a hydrolysis of aluminum nano powder

  • Young Hwa Oh
  • Chang Kyu Rhee
  • Do Hyang Kim
  • Geun Hee Lee
  • Whung Whoe KIM
Article

Abstract

Formation of aluminum hydroxide by a hydrolytic reaction of nano aluminum powder synthesized by a pulsed wire evaporation (PWE) method has been studied. The type and morphology of the hydroxides were investigated with various initial pH and temperatures. The nano fibrous boehmite (AlOOH) was formed predominantly over 40°C of the hydrolytic temperature, while the bayerite (Al(OH)3) was formed predominantly below 30°C with a faceted crystalline structure. As a result, the boehmite showed a much larger specific surface area (SSA) than that of bayerite. The highest SSA of the boehmite was found about 409 m2/g.

Keywords

Aluminum Hydroxide Boehmite Bayerite Korea Atomic Energy Research Institute Amorphous Aluminum Hydroxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. BUGOSH, J. Phys. Chem. 65 (1961) 1789.CrossRefGoogle Scholar
  2. 2.
    V. N. KURLOV, V. M. KIIKO, A. A. KOLCHIN and S. T. MILEIKO, J. Cryst. Growth 204 (1999) 499.CrossRefGoogle Scholar
  3. 3.
    R. GREENWOOD, K. KENDALL and O. BELLON, J. Eur. Ceram. Soc. 21 (2001) 507.CrossRefGoogle Scholar
  4. 4.
    T. S. KANNAN, P. K. PANDA and V. A. JALEEL, J. Mater. Sci. Lett. 16 (1997) 830.CrossRefGoogle Scholar
  5. 5.
    S. MUSIC, D. DRAGCEVIC and S. POPOVIC, Mater. Lett. 40 (1999) 269.CrossRefGoogle Scholar
  6. 6.
    M. P. B. VAN BRUDDEN, Langmuir 14 (1998) 2245.CrossRefGoogle Scholar
  7. 7.
    E. MORGADO Jr., Y. L. LAM, F. L. NAZAR, J. Colloid and Interface Sci. 188 (1997) 257.CrossRefGoogle Scholar
  8. 8.
    E. YOLDAS, J. Appl. Chem. Biotechnol. 23 (1973) 803.CrossRefGoogle Scholar
  9. 9.
    J. H. PARK, M. K. LEE, C. K. RHEE, and W W. KIM, Mat. Sci. Eng. A 375–377 (2004) 1263.CrossRefGoogle Scholar
  10. 10.
    F. XU, X. ZHANG, Y. XIE, X. TIAN and Y. LI, J. Colloid and Interface Sci. 260 (2003) 160.CrossRefGoogle Scholar
  11. 11.
    C. SUDAKAR, G. N. SUBBANNA and T. R. N. KUTTY, J. Phys. Chem. Solids 64 (2003) 2337.CrossRefGoogle Scholar
  12. 12.
    G. H. LEE, J. H. PARK, C. K. RHEE and W. W. KIM, J. Ind. Eng. Chem. 9 (2003) 71.Google Scholar
  13. 13.
    R. K. HART, Trans. Faraday. Soc. 53 (1957) 1020.CrossRefGoogle Scholar
  14. 14.
    G. C.BYE, J. ROBBINSON, KOLLOID-Z. Z. Polymere 198 (1964) 53.CrossRefGoogle Scholar
  15. 15.
    W. MISTA, J. WRZYSZCZ, Thermochim. Acta. 331 (1999) 67.CrossRefGoogle Scholar
  16. 16.
    M. THIRUCHITRAMBALAM, V. R. PALKAR, and V. GOPINATHAN, Mater. Lett. 58 (2004) 3063.CrossRefGoogle Scholar
  17. 17.
    Joint Committee on Powder Diffraction Standard (JCPDS), International Centre of Diffraction Data (ICDD), Swathomore, PA, No.20-0011, No.21-1307 (1995).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Young Hwa Oh
    • 1
  • Chang Kyu Rhee
    • 1
  • Do Hyang Kim
    • 2
  • Geun Hee Lee
    • 1
  • Whung Whoe KIM
    • 1
  1. 1.Korea Atomic Energy Research InstituteDaejeonKorea
  2. 2.Department of Metallurgy EngineeringYonsei UniversitySeoulKorea

Personalised recommendations