Advertisement

Journal of Materials Science

, Volume 41, Issue 3, pp 823–839 | Cite as

A review of the development of three generations of small diameter silicon carbide fibres

  • A. R. Bunsell
  • A. Piant
Article

Abstract

Three generations of small diameter ceramic fibres based on polycrystalline silicon carbide have been developed over a period of thirty years. This has been possible due to studies into the relationships between the microstructures and properties of the fibres. A variety of techniques have been employed by research teams on three continents. The fibres are made by the conversion of polymer precursors to ceramic fibres and all three generations are presently produced commercially. The nature of the precursor and the techniques used for cross-linking have been varied in order to optimise both properties and cost of manufacture. It has been possible to improve the characteristics of the fibres as the processes involved in the cross-linking of the precursor fibres have been better understood and the mechanisms governing both room temperature and high temperature behaviour determined. The result is that, although first generation fibres were limited by a low Young's modulus at room temperature and by creep and instability of the structure at temperatures far lower than those limiting the behaviour of bulk silicon carbide, the third generation fibres shows many of the characteristics of stoichiometric silicon carbide. This remarkable improvement in characteristics has been due to a thorough understanding of the materials science governing the behaviour of these fibres which are reinforcements for ceramic matrix composite materials.

Keywords

Silicon Carbide Creep Rate 40th Anniversary Free Carbon Strength Retention 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. YAJIMA, J. HAYASHI and M. OMORI, Chemistry Letters (1975) 931.Google Scholar
  2. 2.
    F. E. WAWNER JR., in “Fibre Reinforcements for Composite Materials”, edited by A. R. Bunsell (Elsevier, Amsterdam, 1988) Ch. 8, p. 463.Google Scholar
  3. 3.
    M. AKIYAMA, in “Fibre Reinforcements for Composite Materials”, edited by A. R. Bunsell (Elsevier, Amsterdam, 1988) Ch. 9, p. 371.Google Scholar
  4. 4.
    S. YAJIMA, J. HAYASHI and M. OMORI et al.., Nature 261(5562) (1976) 683.Google Scholar
  5. 5.
    S. YAJIMA, K. OKAMURA and J. HAYASHI et al., J. Am. Ceram. Soc. 59 (1976) 324.CrossRefGoogle Scholar
  6. 6.
    R. J. P. EMSLEY, in “Fine Ceramic Fibers”, edited by A. R. Bunsell and M-H. Berger (Marcel Dekker, NY, 1999), Ch. 4, p. 165.Google Scholar
  7. 7.
    S. YAJIMA, Y. HASEGAWA and J. HAYASHI, et al., J. Mat. Sci. 13 (1978) 2569.CrossRefGoogle Scholar
  8. 8.
    Y. HASEGAWA, M. IIMURA and S. YAJIMA, ibid. 15 (1980) 720.CrossRefGoogle Scholar
  9. 9.
    Y. HASEGAWA and K. OKAMURA, ibid. 18 (1983) 3633.CrossRefGoogle Scholar
  10. 10.
    T. TAKI, K. OHAMURA and M. SATO, ibid. 24 (1989) 1263.CrossRefGoogle Scholar
  11. 11.
    S. YAJIMA, T. IWAI and Y. YAMAMURA, et al., ibid. 16 (1981) 1349.CrossRefGoogle Scholar
  12. 12.
    T. YAMAMURA, T. HURUSHIMA and M. KIMOTO, et al., in “High Tech Ceramics”, Materials Sci. Monographs 38A (Elsevier, Amsterdam, 1988) p. 737.Google Scholar
  13. 13.
    W m. TOREKI, G. J. CHOI, C. D. BATICH, M. D. SACKS and M. SALEEM, Ceramic Eng. Sci. Proc. 13 (1992) 198.Google Scholar
  14. 14.
    M. D. SACKS, G. W., SCHEIFFELE, L. ZHANG, Y. YANG and J. J. BRENNAN, ibid. 19 (1998) 73.Google Scholar
  15. 15.
    G. SIMON and A. R. BUNSELL, J. Mat. Sci. 19 (1984) 3649.Google Scholar
  16. 16.
    L. C. SAWYER, M. JAMIESON and D. BRIKOWSKI et al., J. Am.Ceram. Soc. 70 (1987) 798.CrossRefGoogle Scholar
  17. 17.
    G. SIMON and A. R. BUNSELL, J. Mat. Sci. 19 (1984) 3658.Google Scholar
  18. 18.
    M. D. SACKS, J. Europ. Ceram. Soc. 19 (1999) 2305.CrossRefGoogle Scholar
  19. 19.
    A. R. BUNSELL and P. SCHWARTZ, in “Comprehensive Composite Materials”, edited by A. Kelly and C. Zweben (Elsevier, Oxford, 2000), Vol. 5, p. 4, 9.Google Scholar
  20. 20.
    G. MORSCHER and J. DICARLO, J. Am. Ceram. Soc. 75(1) (1992) 136.CrossRefGoogle Scholar
  21. 21.
    L. PORTE and A. SARTRE, J. Mat. Sci. 24 (1989) 271.CrossRefGoogle Scholar
  22. 22.
    C. LAFFON, M. FLANK and P. LAGARDE, et al., ibid. 24 (1989) 1503.Google Scholar
  23. 23.
    P. LE COUSTUMER, M. MONTHIOUX and A. OBERLIN, J. Eur. Ceram. Soc. 11 (1993) 95.CrossRefGoogle Scholar
  24. 24.
    R. BODET, X. BOURRAT, J. LAMON and R. NASLAIN, J. Mat. Sci. 30 (1995) 661.CrossRefGoogle Scholar
  25. 25.
    J. LIPOWITZ, H. A. FREEMAN, R. T. CHEN and E. R. PRACK., Adv. Ceram. Mat. 2 (1987) 121.Google Scholar
  26. 26.
    J. LIPOWITZ, J. A. RABE, L. K. FREVEL and R. L., MILLER, J. Mat. Sci. 25 (1990) 2118.CrossRefGoogle Scholar
  27. 27.
    J. LIPOWITZ, Amer. Ceram. Bull. 70 (1991) 1888.Google Scholar
  28. 28.
    T. MAH, N. L. HECHT and D. E. MCCULLUM, et al., J. Mat. Sci. 19 (1984) 1191.CrossRefGoogle Scholar
  29. 29.
    T. J. CLARK, R. M. ARONS and J. B. STAMATOFF, et al., Ceramic Eng. Sci. Proc. 6 (1985) 576.Google Scholar
  30. 30.
    T. J. CLARK, E. R. PRACK, M. I. HAIDER and L. C. SAWYER, ibid. 8 (1987) 717.Google Scholar
  31. 31.
    T. SHIMOO, Y. MORISADA, and K. OKAMURA J. Mat. Sci. 37 (2002) 4361.CrossRefGoogle Scholar
  32. 32.
    T. SHIMOO, T. MORITA and K. OKAMURA ibid. 37 (2002) 3181.CrossRefGoogle Scholar
  33. 33.
    M. NARISAWA, T. SHIMOO and K. OKAMURA, et al., in “Fine Ceramic Fibers”, edited by A. R. Bunsell, and M-H. Berger (Marcel Dekker, NY, 1999) Ch. 5, p. 207.Google Scholar
  34. 34.
    M. H. JASKOWIAC and A. DI CARLO, J. Am. Ceram. Soc. 72 (1989) 192.CrossRefGoogle Scholar
  35. 35.
    M. SUGIMOTO, T. SHIMOO, K. OKAMURA and T. SEGUCHI, ibid. 78 (1995) 1849.CrossRefGoogle Scholar
  36. 36.
    T. TAKI, K. OKAMURA and M. SATO, et al., J. Mat. Sci. Lett. 7 (1988) 209.CrossRefGoogle Scholar
  37. 37.
    S. YAJIMA, K. OKAMURA and T. MATSUZAWA, et al., Nature 279 (1979) 706.CrossRefGoogle Scholar
  38. 38.
    E. BOUILLON, F. LANGLAIS and R. PAILLER, et al., J. Mat. Sci. 26 (1991) 1333.CrossRefGoogle Scholar
  39. 39.
    M. TAKEDA, Y. IMAI and H. ICHIKAWA, Ceramic Eng. Sci. Proc. 12 (1991) 1007.Google Scholar
  40. 40.
    M. TAKEDA, Y. IMAI, H. ICHIKAWA and T. ISHIKAWA, ibid. 14 (1993) 540.Google Scholar
  41. 41.
    K. KUMAGAWA, Y. YAMAOKA, M. SHIBUYA and T. YAMANURA, ibid. 18 (1997) 113.Google Scholar
  42. 42.
    N. HOCHET, M.-H. BERGER and A. R. BUNSELL, J. Microsc. 185 (1997) 243CrossRefGoogle Scholar
  43. 43.
    M.-H. BERGER, N. HOCHET and A. R. BUNSELL, Ceramic Eng. Sci. Proc. 19 (1998) 39.Google Scholar
  44. 44.
    M.-H. BERGER and A. R. BUNSELL, Adv. Comp. Lett. 2 (1993) 87.Google Scholar
  45. 45.
    M.-H. BERGER, N. HOCHET and A. R. BUNSELL, J. Microsc. 177 (1995) 230.Google Scholar
  46. 46.
    M.-H. BERGER, N. HOCHET and A. R. BUNSELL, in “Fine Ceramic Fibers”, edited by A. R. Bunsell and M-H. Berger (Marcel Dekker, NY, 1999) Ch. 6, p. 231.Google Scholar
  47. 47.
    M. TAKEDA, J. SAKAMOTO, Y. IMAI, H. ICHIKAWA and T. ISHIKAWA, Ceramic Eng. Sci. Proc. 15 (1994) 133.Google Scholar
  48. 48.
    M. NAGAMORI, J. BOIVIN and A. CLAVEAU, J. Mat. Sci. 30 (1995) 5449.CrossRefGoogle Scholar
  49. 49.
    G. CHOLLON, R. PAILLER and R. NASLAIN, et al., ibid. 32 (1997) 327.CrossRefGoogle Scholar
  50. 50.
    D. M. MIESKOWSKI, T. E. MITCHELL and A. H. HEUER, J. Am. Ceram. Soc. 67 (1984) C17.Google Scholar
  51. 51.
    K. KAKIMOTO, T. SHIMOO and K. OKAMURA, J. Ceramic Soc. of Japan 103 (1995) 557.Google Scholar
  52. 52.
    T. SHIMOO, F. TOYODA and K. OKAMURA, J. Am. Ceram. Soc. 83 (2000) 3811.CrossRefGoogle Scholar
  53. 53.
    T. SHIMOO, K. OKAMURA and T. MORITA, J. Mat. Sci. 38 (2003) 3089.CrossRefGoogle Scholar
  54. 54.
    D. J. PYSHER, N. JIA, R. BODET and R. E. TRESSLER, in “High performance composites for the 1990s”, edited by S. K. Ballard and F. Marikar (Minerals, Metals and Mat. Soc., 1991) p. 267.Google Scholar
  55. 55.
    T. ISHIKAWA, S. KAJII, T. HISAYUKI and Y. KOHTOKU, Ceramic Eng. Sci. Proc. 19 (1998) 283.CrossRefGoogle Scholar
  56. 56.
    H. ICHIKAWA and T. ISHIKAWA, in “Comprehensive Composite Materials”, edited by A. Kelly, C. Zweben and T. Chou (Elsevier Sci. Oxford, 2000) Vol. 1, p. 107.Google Scholar
  57. 57.
    J. LIPOWITZ and J. A. RABE, Ceramic Eng. Sci. Proc. 18 (1997) 147.Google Scholar
  58. 58.
    H.-M. YUN and J. A. DICARLO, ibid. 20 (1999) 259.Google Scholar
  59. 59.
    J. A. DICARLO and H.-M. YUN, in “Handbook of ceramic composites”, edited by N. P. Bansal (Kluwer, Boston, 2005) p. 33.Google Scholar
  60. 60.
    H. ICHIKAWA, K. OKAMURA, and T. SEGUCHI, in “High temperature ceramic matrix composites II”, edited by A. G. Evans and R. Naslain, Ceramic Transactions 58, (American Ceramic Soc., 1995) p. 65.Google Scholar
  61. 61.
    M. D. SACKS, A. A. MORRONE, G. W. SCHEIFFELE and M. SALEEM, Ceramic Eng. Sci. Proc. 16 (1995) 25.Google Scholar
  62. 62.
    H. M. YUN and J. A. DI CARLO, NASA Glenn Research, Technical Memorandum. Vol. 1999–209284 (July, 1999)Google Scholar
  63. 63.
    M.-H. BERGER, in”Advances in Ceramic Matrix Composites IX”, edited by N. P. Bansal, J. P. Singh, W. M. Kriven and H. Scheider, Ceramic Transactions 153 (American Ceramic Soc., 2003) p. 3.Google Scholar
  64. 64.
    T. TANAKA, S. SHIBAYAMA, M. TAKEDA and A. YOKOYAMA, Ceram. Eng. Sci. Proc. 24 (2003) 217.Google Scholar
  65. 65.
    H. M. YUN, J. A. DI CARLO, R. T. BHATT and J. B. HURST, ibid. 24 (2003) 247.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • A. R. Bunsell
    • 1
  • A. Piant
    • 1
  1. 1.Ecole des Mines de ParisCentre des MatériauxEvry CedexFrance

Personalised recommendations