Advertisement

Journal of Materials Science

, Volume 41, Issue 3, pp 763–777 | Cite as

The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method

  • Z. A. Munir
  • U. Anselmi-Tamburini
  • M. Ohyanagi
Article

Abstract

The use of electric current to activate the consolidation and reaction-sintering of materials is reviewed with special emphasis of the spark plasma sintering method. The method has been used extensively over the past decade with results showing clear benefits over conventional methods. The review critically examines the important features of this method and their individual roles in the observed enhancement of the consolidation process and the properties of the resulting materials.

Keywords

Field activated sintering Spark plasma sintering SPS Review 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. D. KINGERY, in “Sintering’ 91,” edited by A. C. D. Chaklader and J. A. Lund, (Trans Tech, Brookfield, VT, 1992) p. 1.Google Scholar
  2. 2.
    J. E. BURKE, Ceramics and Civilization 1 (1985) 315.Google Scholar
  3. 3.
    G. C. KUCZYNSKI, Trans. AIME 185 (1949) 169.Google Scholar
  4. 4.
    F. V. LENEL, ibid. 175 (1948) 878.Google Scholar
  5. 5.
    R. L. COBLE, J. Amer. Ceram. Soc. 41 (1958) 55.Google Scholar
  6. 6.
    W. D. KINGERY and M. BERG, J. Appl. Phys. 26 (1955) 1205.Google Scholar
  7. 7.
    R. M. GERMAN and Z. A. MUNIR, Met. Trans 6A (1975) 2229.Google Scholar
  8. 8.
    Idem., J. Amer. Ceram. Soc. 59 (1976) 379.Google Scholar
  9. 9.
    Z. A. MUNIR and R. M. GERMAN, High Temp. Sci. 9 (1977) 275.Google Scholar
  10. 10.
    U. ANSELMI-TAMBURINI, J. E. GARAY, Z. A. MUNIR, A. TACCA, F. MAGLIA and G. SPINOLO, J. Mater. Res. 19 (2004) 3255.Google Scholar
  11. 11.
    G. F. TAYLOR, US Patent No. 1,896,854, 1933.Google Scholar
  12. 12.
    Idem., US Patent No. 1,896,853, 1933.Google Scholar
  13. 13.
    G. D. CREMER, US Patent No. 2,355,954, 1944.Google Scholar
  14. 14.
    V. F. LENEL, Trans. AIME 203 (1955) 158.Google Scholar
  15. 15.
    R. W. BOESEL, M. I. JACOBSON and I. S. YOSHIOKA, Proc. Fall Powder Met. Conf. Metal Powder Industries Federation, New York, pp. 75–99, 1970.Google Scholar
  16. 16.
    C. G. GOETZEL and V. S. DEMARCHI, Powder Met. Int. 3 (1971) 80.Google Scholar
  17. 17.
    K. INOUE, US Patent 3,340,052, 1967.Google Scholar
  18. 18.
    Idem., US Patent 3,656,946, 1972.Google Scholar
  19. 19.
    I. J. SHON and Z. A. MUNIR, Mater. Sci. Engin. A202 (1995) 256.Google Scholar
  20. 20.
    G. XIE, O. OHASHI, M. SONG, K. MITSUISHI and K. FURUYA, Appl. Surf. Sci. 241 (2005) 102.Google Scholar
  21. 21.
    W. M. GOLDBERGER B. MERKLE and D. BOSS, Adv. Powder Metall. Particulate Mater 6 (1994) 91.Google Scholar
  22. 22.
    M. TOKITA, Mater. Sci. Forum 308–311 (1999) 83.Google Scholar
  23. 23.
    U. ANSELMI-TAMBURINI, J. E. GARAY and Z. A. MUNIR, to be submitted, 2005.Google Scholar
  24. 24.
    R. M. GERMAN, Sintering Theory and Practice, (Wiley, New York, 1996) p. 482.Google Scholar
  25. 25.
    D. E. CLARK and W. H. SUTTON, Ann. Rev. Mater. Sci. 26 (1996) 299.Google Scholar
  26. 26.
    Z. A. MUNIR and H. SCHMALZRIED, J. Mater Synth. Process. 1 (1993) 3.Google Scholar
  27. 27.
    H. CONRAD (Ed.), Mater Sci. Engin. (special issue), A287(2) (2000) 190.Google Scholar
  28. 28.
    R. J. SCHWENSFEIR JR. and C. ELBAUM, Phys. Chem. Solids 26 (1965) 781.Google Scholar
  29. 29.
    Z. A. MUNIR and T. T. NGUYEN, Phil. Mag. A47 (1983) 105.Google Scholar
  30. 30.
    Z. A. MUNIR and A. A. YEH, ibid. A56 (1987) 63.Google Scholar
  31. 31.
    C. A. MACHIDA and Z. A. MUNIR, J. Cryst. Growth, 68 (1984) 665.Google Scholar
  32. 32.
    W. LIU and J. Z. CUI, J. Mater. Sci. Lett. 16 (1997) 1410.Google Scholar
  33. 33.
    Idem., Scripta Metall Mater. 33 (1995) 623.Google Scholar
  34. 34.
    H. CONRAD, Mater. Sci. Eng. A287 (2000) 276.Google Scholar
  35. 35.
    M. ZHEN, X. P. LU and H. CONRAD, Scripta Mater. 44 (2001) 381.Google Scholar
  36. 36.
    K. JUNG and H. CONRAD, J. Mater. Sci. 39 (2004) 1803.Google Scholar
  37. 37.
    C. SCHALANSKY and Z. A. MUNIR J. Cryst. Growth 97 (1989) 310.Google Scholar
  38. 38.
    Z. A. MUNIR, Zeit. Physik. Chem., 207 (1998) 39.Google Scholar
  39. 39.
    Idem., Solid State Ionics, 101 (1997) 991.Google Scholar
  40. 40.
    T. B. HOLLAND, J. F. LöFFLER and Z. A. MUNIR, J. Appl. Phys. 95 (2004) 2896.Google Scholar
  41. 41.
    J. R. FRIEDMAN, J. E. GARAY, U. ANSELMI-TAMBURINI and Z. A. MUNIR, Intermetallics 12 (2004) 589.Google Scholar
  42. 42.
    J. E. GARAY, U. ANSELMI-TAMBURINI and Z. A. MUNIR, Acta Mater. 51 (2003) 4487.Google Scholar
  43. 43.
    N. BERTOLINO, J. GARAY, U. ANSELMI-TAMBURINI and Z. A. MUNIR, Phil. Mag. B 82 (2002) 969.Google Scholar
  44. 44.
    W. CHEN, U. ANSELMI-TAMBURINI, J. E. GARAY, J. R. GROZA and Z. A. MUNIR, Mater. Sci. Eng A394 (2005) 132.Google Scholar
  45. 45.
    C. OETZEL, R. CLASEN and J. TABELLION, Ceram. Forum Int. 81 (2004) E35.Google Scholar
  46. 46.
    H. B. HUNTINGTON, in “Diffusion in Solids”, edited by A. S. Nowick and J. J. Burton (Academic Press, New York, 1975) p. 306.Google Scholar
  47. 47.
    N. BERTOLINO, J. GARAY, U. ANSELMI-TAMBURINI and Z. A. MUNIR, Scripta Mater. 44 (2001) 737.Google Scholar
  48. 48.
    P. ASOKA-KUMAR, M. ALATALO, V. J. GOSH, A. C. KRUSEMAN, B. NIELSON and K. G. LYNN, Phys. Rev. Lett. 77 (1996) 2097.Google Scholar
  49. 49.
    J. E. GARAY, S. C. GLADE, U. ANSELMI-TAMBURINI, P. ASOKA-KUIMAR and Z. A. MUNIR, Appl. Phys, Lett. 85 (2004) 573.Google Scholar
  50. 50.
    V. MAMEDOV, Powder Metall. 45 (2002) 322.Google Scholar
  51. 51.
    Z. SHEN and M. NYGREN, Key Eng. Mater. 247 (2003) 79.Google Scholar
  52. 52.
    S. H. RISBUD, J. R. GROZA and M. J. KIM, Phil. Mag. B 69 (1994) 525.Google Scholar
  53. 53.
    X. J. CHEN, K. A. KHOR, S. H. CHAN and L. G. YU, Mater. Sci. Eng. A374 (2004) 64.Google Scholar
  54. 54.
    Z. SHEN, H. PENG and M. NYGREN, Adv. Mater. 15 (2003) 1006.Google Scholar
  55. 55.
    T. TAKEUCHI, E. BETOURNE, M. TABUCHI, H. KAGEYAMA, Y. KOBAYASHI, A. COATS, F. MORRISON, D. C. SINCLAIR and A. R. WEST, J. Mater. Sci. 34 (1999) 917.Google Scholar
  56. 56.
    M. YUE, J. ZHANG, Y. XIAO, G. WANG and T. LI, IEEE Trans Magnetics 39 (2003) 3551.Google Scholar
  57. 57.
    N. ICHINOSE, Ceram. Trans. 74 (1997) 133.Google Scholar
  58. 58.
    H. FURUHASHI and O. OHHASHI, J. Jpn. Instit. Metals 67 (2003) 448.Google Scholar
  59. 59.
    D. KUSANO and Y. HORI, ibid. 66 (2002) 1063.Google Scholar
  60. 60.
    J. YAMAMOTO, Y. SHIMIZU, H. OHTANI, K. SHIOZAKI and K. SKAKAKI, ibid. 67 (2003) 555.Google Scholar
  61. 61.
    R. ORRU, J. WOOLMAN, G. CAO and Z. A. MUNIR, J. Mater. Res. 16 (2001) 1439.Google Scholar
  62. 62.
    F. BERNARD, F. CHARLOT, E. GAFFET and Z. A. MUNIR, J. Amer. Ceram. Soc. 84 (2001) 910.Google Scholar
  63. 63.
    J. W. LEE, Z. A. MUNIR, M. SHIBUYA and M. OHYANAGI, ibid. 84 (2001) 1209.Google Scholar
  64. 64.
    T. YAMAMOTO, H. KITAURA, Y. KODERA, T. ISHII, M. OHYANAGI and Z. A. MUNIR, ibid. 87 (2004) 1436.Google Scholar
  65. 65.
    M. OHYANAGI, T. YAMAMOTO, H. KITAURA, Y. KODERA, T. ISHII and Z. A. MUNIR, Scripta Mater. 50 (2004) 111.Google Scholar
  66. 66.
    E. M. HEIAN, S. K. KHALSA, J. W. LEE, Z. A. MUNIR, T. YAMAMOTO and M. OHYANAGI, J. Amer. Ceram. Soc. 87 (2004) 779.Google Scholar
  67. 67.
    J. N. WOOLMAN, J. J. PETROVIC and Z. A. MUNIR, Scripta Mater., 48 (2003) 819.Google Scholar
  68. 68.
    E. M. HEIAN, J. C. GIBELING and Z. A. MUNIR, Mater. Sci. Eng. A368 (2004) 168.Google Scholar
  69. 69.
    M. OSKARSSON, P. LUNDBERG, A. PETTERSSON, P. PETTERSSON and M. NYGREN, Proc. 20th Int. Sympos. Ballistics, 2002, p. 1182.Google Scholar
  70. 70.
    Y. GU, K. A. KHOR and P. CHEANG, Biomater. 25 (2004) 4127.Google Scholar
  71. 71.
    A. NAKAHIRA, M. TAMAI, H. ARITANI, S. NAKAMURA and K. YAMASHITA, J. Biomed. Mater. Res. 62 (2002) 550.Google Scholar
  72. 72.
    S. D. DE LA TORRE, D. OLESZAK, A. KAKITSUJI, K. MIYAMOTO and H. MIYAMOTO, Mater. Sci. Eng. A A276 (2000) 226.Google Scholar
  73. 73.
    Z. SONG, S. KISHIMOTO and N. SHINYA, J. Mater. Sci. 38 (2003) 4211.Google Scholar
  74. 74.
    H. C. KIM, I. J. SHON and Z. A. MUNIR, ibid. in press (2005).Google Scholar
  75. 75.
    S. I. CHA, S. H. HONG and B. K. KIM, Mater. Sci. Eng. A351 (2003) 31.Google Scholar
  76. 76.
    J. W. LEE, Z. A. MUNIR and M. OHYANAGI, ibid. A325 (2002) 221.Google Scholar
  77. 77.
    X. Y. ZHANG, S. H. TAN and D. L. JIANG, Ceram. Int. 31 (2005) 267.Google Scholar
  78. 78.
    C. SHEN Q. F. LIU and Q. LIU, Mater. Lett. 58 (2004) 2302.Google Scholar
  79. 79.
    Y. GUO, K. KAKIMOTO and H. OHSATO, Jap. J. Appl. Phys. 42 (2003) 7410.Google Scholar
  80. 80.
    M. OKAMOTO, Y. AKIMUNE, K. FURUYA and M. HATANO, Solid State Ionics 176 (2005) 675.Google Scholar
  81. 81.
    S. D. DE LA TORRE, D. OLESZAK, F. ALMERAYA, A. MARTINEZ and R. MARTINEZ, Mater. Sci. Forum 343–346(2) (2000) 855.Google Scholar
  82. 82.
    S. YAMAMOTO, S. HORIE, N. TANAMACHI, H. KURISU and M. MATSUURA, J. Magnetism. Magnet. Mater. 235 (2001) 218.Google Scholar
  83. 83.
    J. SUN, J. LI, G. SUN and W. QU, Ceram. Int. 28 (2002) 855.Google Scholar
  84. 84.
    M. T. BUSCAGLIA, V. BUSCAGLIA, M. VIVIANI, J. PETZELT, M. SAVINOV and L. MITOSERIU, Nanotechnol. 15 (2004) 1113.Google Scholar
  85. 85.
    T. WADA, K. TSUJI, T. SAITO, M. TAKEHISA and Y. MATSUO, Jpn J. Appl. Phys. 42 (2003) 6110.Google Scholar
  86. 86.
    Y. LUO, P. WEI, S. LI, R. WANG and J. LI, Mater. Sci. Eng. A345 (2003) 99.Google Scholar
  87. 87.
    S. ISHIHARA, W. ZHANG, H. KIMURA, M. OMORI and A. INOUE, Mater. Trans JIM. 44 (2003) 138.Google Scholar
  88. 88.
    B. SHEN, H. KIMURA, A. INOUE, M. OMORI and A. OKUBO, ibid. 43 (2002) 1961.Google Scholar
  89. 89.
    H. C. KIM, I. J. SHON, J. E. GARAY and Z. A. MUNIR, Int. J. Refractory Metals and Hard Materials 22 (2004) 257.Google Scholar
  90. 90.
    S. CHA and S. H. HONG, Mater. Sci. Eng A356 (2003) 381.Google Scholar
  91. 91.
    V. GAUTHIER, F. BERNARD, E. GAFFET, Z. A. MUNIR and J. P. LARPIN, Intermetallics 9 (2001) 571.Google Scholar
  92. 92.
    F. BERNARD, F. CHARLOT, E. GAFFET and Z. A. MUNIR, J. Amer. Ceram. Soc. 84 (2001) 910.Google Scholar
  93. 93.
    A. M. LOCCI, R. ORRù, G. CAO and Z. A. MUNIR, Intermetallics 11 (2003) 555.Google Scholar
  94. 94.
    J. FAN, L. CHEN, S. BAI and X. SHI, Mater. Lett. 58 (2004) 3876.Google Scholar
  95. 95.
    W. LIU and M. NAKA, Scripta Mater. 48 (2003) 1225.Google Scholar
  96. 96.
    C. YOU, D. JIANG and S. TAN, J. Amer. Ceram. Soc. 87 (2004) 759.Google Scholar
  97. 97.
    C. LI, Y. HUANG, C. WANG, K. TANG, S. LI and Q. ZAN, Mater. Lett. 57 (2002) 336.Google Scholar
  98. 98.
    W. S. CHO, J. H. LEE, M. W. CHO, E. S. LEE, D. S. PARK and Z. A. MUNIR, Key Eng. Mater. 287 (2005) 340.Google Scholar
  99. 99.
    Y. LUO, S. LI, W. PAN, J. CHEN and R. WANG, J. Mater. Sci. 39 (2004) 3137.Google Scholar
  100. 100.
    T. SAITO, T. TAKEUCHI and H. KAGEYAMA, J. Mater. Res. 19 (2004) 2730.Google Scholar
  101. 101.
    H. ONO, T. TAYU, N. WAKI, T. SUGIYAMA, M. SHIMADA, M. KANOU, A. FUJIKI, H. YAMAMOTO and M. TANI, IEEE Trans. Magnetics 39 (2003) 2081.Google Scholar
  102. 102.
    H. B. LEE, S. H. KIM, S. W. KANG and Y. H. HAN, British Ceram. Trans. 102 (2003) 231.Google Scholar
  103. 103.
    C. BALAZSI, Z. SHEN, Z. KONYA, Z. KASZTOVSKY, F. WEBER, Z. VERTESY, L. P. BIRO, I. KIRICSI and P. ARATO, Composite Sci. Technol. 65 (2005) 727.Google Scholar
  104. 104.
    G. D. ZHAN, J. D. KUNTZ, H. WANG and A. K. MUKHERJEE, Therm. Conduct. 27 (2005) 103.Google Scholar
  105. 105.
    N. KUBOTA, M. KATAGIRI, K. KAMIJO and H. NANTO, Nucl. Instr. Methods Phys. Res. 529 (2004) 321.Google Scholar
  106. 106.
    R. WANG, R. XIE, T. SEKIYA and Y. SHIMOJO, Mater. Res. Bull. 39 (2004) 1709.Google Scholar
  107. 107.
    R. J. XIE, Y. AKIMUNE, R. WANG, N. HIROSAKI and T. NISHIMURA, Jpn. J. Appl. Phys. 42 (2003) 7404.Google Scholar
  108. 108.
    C. E. WEN, M. MABUCHI, Y. YAMADA, K. SHIMOJIMA, Y. CHINO, H. HOSOKAWA and T. ASAHINA, Mater. Sci. Forum 426–432 (2003) 417.Google Scholar
  109. 109.
    F. KATSUKI, T. TOMIDA, A. TAKATA, K. YANAGIMOTO and S. MATSUDA, Mater. Trans JIM 41 (2000) 624.Google Scholar
  110. 110.
    Y. J. WU, N. UEKAWA, K. KAKEGAWA and Y. SASAKI, Key Eng, Mater. 228–229 (2002) 3.Google Scholar
  111. 111.
    N. J. PARK, S. J. LEE, I. S. LEE, K. S. CHO and S. J. KIM, Mater. Sci. Forum, 449–452 (2004) 1109.Google Scholar
  112. 112.
    T. WEISSGAERBER, N. REINFRIED, A. BOEHM and B. KIEBACK, Adv. Powder Metall. Particulate Mater. (Computer Opt. Disk) (2003) 980.Google Scholar
  113. 113.
    H. KAGA, E. M. HEIAN, Z. A. MUNIR, C. SCHMALZRIED and R. TELLE, J. Amer. Ceram. Soc. 84 (2001) 2764.Google Scholar
  114. 114.
    M. SHIBUYA, M. KAWATA, M. OHYANAGI and Z. A. MUNIR, ibid. 86, (2003) 706–710.Google Scholar
  115. 115.
    T. TAKEUCHI, T. ISHIDA, K. ICHIKAWA, S. MIYAMOTO, M. KAWAHARA and H. KAGEYAMA, J. Matter. Sci. Lett. 21 (2002) 855.Google Scholar
  116. 116.
    T. TAKEUCHI, M. TAKAHASHI, K. ADO, N. TAMARI, K. ICHIKAWA and S. MIYAMOTO, J. Amer. Ceram. Soc. 84 (2001) 2521.Google Scholar
  117. 117.
    S. Y. LEE, S. I. YOO, Y. W. KIM, N. M. HEANG and Y. D. KIM, ibid. 86 (2003) 1800.Google Scholar
  118. 118.
    X. LI, A. CHIBA, M. SATO and S. TAKASHASH, J. Alloys Compounds 336 (2002) 232.Google Scholar
  119. 119.
    M. W. A. STEWART, M. L. CARTER, S. MORICCA, D. S. PERARA and E. R. VANCE, J. Austral. Ceram. Soc. 33 (1997) 43.Google Scholar
  120. 120.
    J. JIANG, L. CHEN, S. BAI, Q. YAO and Q. WANG, Scripta Mater 52 (2005) 347.Google Scholar
  121. 121.
    N. ARITA, K. KOGA, K. AKAI, H. KURISU, S. YAMAMOTO and M. MATSUURA, Trans Mater. Res. Jpn. 29 (2004) 2555.Google Scholar
  122. 122.
    R. CHAIM, Z. SHEN and M. NYGREN, J. Mater. Res. 19 (2004) 2527.Google Scholar
  123. 123.
    Z. Y. FU, J. F. LIU, H. WANG, D. H. HE and Q. J. ZHANG, Mater. Sci. Technol. 20 (2004) 1097.Google Scholar
  124. 124.
    M. NYGREN and Z. SHEN, Silicates Industr. 69 (2004) 211.Google Scholar
  125. 125.
    B. BASU, J. H. LEE and D. Y. KIM, J. Amer. Ceram. Soc. 87 (2004) 1771.Google Scholar
  126. 126.
    J. KUCHINO, K. KUROKAWA, T. SHIBAYAMA and H. TAKAHASHI, Vacuum 73 (2004) 623.Google Scholar
  127. 127.
    M. YUE, J. X. ZHANG, W. Q. LIU and G. P. WANG, J. Magnetism Magnet. Mater. 271 (2004) 364.Google Scholar
  128. 128.
    X. SU, P. WANG, W. CHEN, Z. SHEN, M. NYGREN, Y. CHENG and D. YAN, J. Mater. Sci., 39 (2004) 6257.Google Scholar
  129. 129.
    Y. H. HAN, M. NAGATA, N. UEKAWA and K. KAKEGAWA, British Ceram. Trans. 103 (2004) 219.Google Scholar
  130. 130.
    Y. S. KWON, D. V. DUDINA, M. A. KORCHAGIN and O. I. LOMOVSKY, J. Mater. Sci. 39 (2004) 5325.Google Scholar
  131. 131.
    L. ZHOU, Z. ZHAO, A. ZIMMERMANN, F. ALDINGER and M. NYGREN, J. Amer. Ceram. Soc. 87 (2004) 606.Google Scholar
  132. 132.
    L. A. STANCIU, V. Y. KODASH and J. R. GROZA, Metall. Mater. Trans. A 32A (2001) 2633.Google Scholar
  133. 133.
    Z. SHEN, M. JOHNSSON, Z. ZHAO and M. NYGREN, J. Amer. Ceram. Soc. 85 (2002) 1921.Google Scholar
  134. 134.
    Y. ZHOU, K. HIRAO, Y. YAMAUCHI and S. KANSAKI, Scripta Mater. 48 (2003) 1631.Google Scholar
  135. 135.
    D. J. CHEN and M. J. MAYO, J. Amer. Ceram. Soc. 79 (1996) 906.Google Scholar
  136. 136.
    U. ANSELMI-TAMBURINI, J. E. GARAY and Z. A. MUNIR, Mater. Sci. Eng. in press, 2005.Google Scholar
  137. 137.
    Ref. 24, p. 170.Google Scholar
  138. 138.
    G. SKANDAN, H. HAHN, B. H. KEAR, M. RODDY and W. R. CANNON, Mater. Lett. 20 (1994) 305.Google Scholar
  139. 139.
    J. JAMNIK and R. RAJ, J. Amer. Ceram. Soc. 79 (1996) 193.Google Scholar
  140. 140.
    A. K. PANNIKKAT and R. RAJ, Acta Mater. 47 (1999) 3423.Google Scholar
  141. 141.
    M. OMORI, Mater. Sci. Eng. A287 (2000) 183.Google Scholar
  142. 142.
    D. ZHANG, Z. FU, R. YUAN and J. GUO, in Multiphased Ceramic Materials, edited by W. H. Tuan and J. K. Guo (Springer, Berlin, 2004) p. 65.Google Scholar
  143. 143.
    M. NYGREN and Z. SHEN, Solid State Sci. 5 (2003) 125.Google Scholar
  144. 144.
    S. W. WANG, L. D. CHEN, T. HIRAI and Y. S. KANG, J. Mater. Sci. Lett. 18 (1999) 1119.Google Scholar
  145. 145.
    G. XIE, O. OHASHI, K. CHIBA, N. YAMAGUCHI, M. SONG, K. FURUYA and T. NODA, Mater. Sci. Eng. A359 (2003) 384.Google Scholar
  146. 146.
    M. TOKITA, New Ceramics 7 (1994) 63.Google Scholar
  147. 147.
    K. OZAKI, K. KOBAYASHI, T. NISHIO, A. MATSUMOTO and A. SUGIYAMA, J. Jpn. Soc. Powder Metall. 47 (2000) 293.Google Scholar
  148. 148.
    O. YANAGISAWA, H. KURAMOTO, K. MATSUGI and M. KOMATSU, Mater. Sci. Eng. A350 (2003) 184.Google Scholar
  149. 149.
    Y. MAKINO, New Ceramics 10 (1997) 39.Google Scholar
  150. 150.
    H. TOMINO, H. WATANABE and Y. KONDO, J. Jpn. Soc. Powd. Metall. 44 (1997) 974.Google Scholar
  151. 151.
    O. A. GRAEVE, E. M. CARRILLO-HEIAN, A. FENG and Z. A. MUNIR, J. Mater. Res. 16 (2001) 93.Google Scholar
  152. 152.
    Y. C. WANG, Z. Y. FU and W. M. WANG, Key Eng. Mater. 249 (2003) 471.Google Scholar
  153. 153.
    Y. WANG and Z. FU, Mater. Sci. Eng. B90 (2002) 34.Google Scholar
  154. 154.
    E. M. HEIAN, A. FENG and Z. A. MUNIR, Acta Mater. 50 (2002) 3331.Google Scholar
  155. 155.
    U. ANSELMI-TAMBURINI, S. GENNARI, J. E. GARAY and Z. A. MUNIR, Mater. Sci. Eng. A394 (2005) 139.Google Scholar
  156. 156.
    U. ANSELMI-TAMBURINI, J. E. GARAY, Z. A. MUNIR, A. TACCA, F. MAGLIA, G. CHIODELLI and G. SPINOLO, J. Mater. Res. 19 (2004) 3263.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Z. A. Munir
    • 1
  • U. Anselmi-Tamburini
    • 1
    • 2
  • M. Ohyanagi
    • 3
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavisUSA
  2. 2.Department of Materials ChemistryRyukoku UniversityOhtsuJapan
  3. 3.Department of Physical ChemistryUniversity of PaviaPaviaItaly

Personalised recommendations