Journal of Materials Science

, Volume 41, Issue 10, pp 2771–2777 | Cite as

Effect of kissing bond on fatigue behavior of friction stir welds on Al 5083 alloy

  • Caizhi Zhou
  • Xinqi Yang
  • Guohong Luan


Fatigue properties of FS welds with a kissing bond (bonded welds) were studied by comparing the test results of bonded welds with those of sound welds. The fatigue life of bonded welds is 21∼43 times shorter than that of sound welds under the stress ratio R = 0.1, and the fatigue characteristic values of each welds have decreased from 100.24 MPa for sound welds to 65.57 MPa for bonded welds at 2 × 106 cycles. At the macroscopic level there is no evidence of failure by shear. The fatigue fracture revealed cracks initiated from the root tip of kissing bond.


Polymer Fatigue Fatigue Life Fatigue Fracture Stress Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. J. MADDOX, Int. J. Fatigue 25 (2003) 1359.CrossRefGoogle Scholar
  2. 2.
    A. HABOUDOU, P. PEYRE, A. B. VANNES and G. PEIX, Mater. Sci. Eng. A 363 (2003) 40.CrossRefGoogle Scholar
  3. 3.
    Y. LI, L. E. MURR and E. A. TRILLO, J. Mater. Sci. 19 (2000) 1047.Google Scholar
  4. 4.
    M. A. SUTTON, B. Y. YANG, A. P. REYNOLDS and R. TAYLOR, Mater. Sci. Eng. A 323 (2002) 160.CrossRefGoogle Scholar
  5. 5.
    C. G. RODES, M. W. MAHONEY, W. H. BINGEL, R. A. SPURLING and C. C. BAMPTON, Scripta Mater. 36 (1997) 69.CrossRefGoogle Scholar
  6. 6.
    O. V. FLORES, C. KENNEDY and L. E. MURR, Scripta Mater. 38 (1998) 703.CrossRefGoogle Scholar
  7. 7.
    M. W. MAHONEY, C. G. RODES, J. G. FLINTOFF, R. A. SPURLING and W. H. BINGEL, Metall. Mater. Trans. A 29 (1998) 1955.Google Scholar
  8. 8.
    S. BENAVIDES, Y. LI, L. E. MURR, D. BROWN and J. C. MCCLURE, Scripta Mater. 41 (1999) 809.CrossRefGoogle Scholar
  9. 9.
    K. V. JATA and S. L. SEMIATIN, ibid. 43 (2000) 743.CrossRefGoogle Scholar
  10. 10.
    C. J. DAWES and W. M. THOMAS, Weld J. 75 (1996) 41.Google Scholar
  11. 11.
    G. CAMPBELL and T. STOTLER, Weld J. 78 (1999) 45.Google Scholar
  12. 12.
    H. J. ROGERSON, Weld. Res. Abroad 10 (1969) 60.Google Scholar
  13. 13.
    J. E. TOMLINSON and J. L. WOOD, Brit. Weld. Journal GB7 (1960) 22.Google Scholar
  14. 14.
    H. OKAMURA, K. AOTA, M. SAKAMOTO, M. EZUMI and K. IKEUCHI, J. Jpn. Weld Soc. 19 (2001) 446.Google Scholar
  15. 15.
    Y. S. SATO, F. YAMASHITA and Y. SUGIURA, Scripta Mater. 50 (2004) 365.CrossRefGoogle Scholar
  16. 16.
    L. HOU, in “Fracture Behavior and Assessment of Welded Structure” (China Machine Press, Beijing, 2000) p. 221.Google Scholar
  17. 17.
    T. S. SRIVATSAN, Mater. Design 23 (2002) 141.CrossRefGoogle Scholar
  18. 18.
    D. P. FIELD, T. W. NELSON, Y. HOVANSKI and K. V. JATA, Metall Mater. Trans. A 32 (2001) 2869.Google Scholar
  19. 19.
    Y. S. SATO, H. KOKAWA, K. IKEDA, M. ENOMOTO, S. JOGAN and T. HASHIMOTO, Metall Mater. Trans. A 32 (2001) 941.Google Scholar
  20. 20.
    S. H. C. PARK, Y. S. SATO, H. KOKAWA, Metall Mater. Trans. A 34 (2003) 987.Google Scholar
  21. 21.
    M. PEEL, A. STEUWER, M. PREUSS and P. J. WITHERS, Acta Mater. 51 (2003) 4791.CrossRefGoogle Scholar
  22. 22.
    M. BOZ and A. KURT, Mater. Design 25 (2004) 343.CrossRefGoogle Scholar
  23. 23.
    C. ZHOU, X. YANG and G. LUAN, Rare Metal. Mat. Eng. (in press).Google Scholar
  24. 24.
    T. L. DICKERSON and J. PRZYDATEK, Int. J. Fatigue 25 (2003) 1359.CrossRefGoogle Scholar
  25. 25.
    C. DAWES and W. THOMAS, TWI Bull 6 (1995) 493.Google Scholar
  26. 26.
    S. LOMOLINOA, R. TOVOB and J. DOS SANTOS, Int. J. Fatigue 27 (2005) 305.CrossRefGoogle Scholar
  27. 27.
    T. R. GURUEY, in “Fatigue of Welded Structures” (Cambridge University Press, London, 1979) p. 214.Google Scholar
  28. 28.
    C. CHATFIELD, Statistic for technology, in “A course in applied statistics” (Chapman & Hall, London, 1978) p. 105.Google Scholar
  29. 29.
    Eurocode 9. Design of aluminum structures: part 2: structures susceptible to fatigue. Brussels: CEN, 1998 ENV, 1999–2002.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTianjin UniversityTianjinPeople’s Republic of China
  2. 2.China FSW Center Beijing FSW Technology Limited CompanyBeijingPeople’s Republic of China

Personalised recommendations