Journal of Materials Science

, Volume 41, Issue 12, pp 3723–3728 | Cite as

Fabrication of copper microcylinders in polycarbonate membranes and their characterization

  • Raminder Kaur
  • N. K. Verma
  • S. Kumar
  • S. K. Chakarvarti


The electrochemical template synthesis of high aspect ratio copper microcylinders in the track-etch membranes of polycarbonate having nominal pore size of 800 nm is considered. Effect of various parameters during electrodeposition is studied. It is found that only a narrow range of current densities yields good quality crop. Proper wetting of the membrane prior to electrodeposition is found to make significant contribution towards simultaneous start and uniform growth of the microstructures. The morphological and structural analyses have been carried out through scanning electron microscopy and X-ray diffraction respectively. It is observed that the actual diameter of the cylinders is slightly larger than the nominal pore-size. X-ray diffraction studies reveal that the material has FCC lattice structure with a high texture coefficient for (200) planes. Finally, the voltage-current studies have been carried out and the microstructures are found to obey ohm’s law.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. FORRER, F. SCHLOTTIG, H. SIEGENTHALER and M. TEXTOR, J. Appl. Electrochem. 30 (2000) 533.CrossRefGoogle Scholar
  2. 2.
    C. R. MARTINE, Science 266 (1994) 1961.Google Scholar
  3. 3.
    C. SCHONENBERGER, B. M. I. VAN DER ZANDE, L. G. J. FOKKINK, M. HENNY, C. SCHMID, M. KRUGER, A. BACHTOLD, R. HUBER, H. BIRK and U. STAUFER, J. Phys. Chem. B 101 (1997) 5497.CrossRefGoogle Scholar
  4. 4.
    G. E. POSSIN, Rev. Sci. Intrum. 41 (1970) 772.CrossRefGoogle Scholar
  5. 5.
    W. D. WILLIAMS and N. GIORDANO, Rev. Sci. Instrum. 55 (1984) 410.CrossRefGoogle Scholar
  6. 6.
    R. M. PENNER and C. R. MARTINE, J. Electrochem. Soc. 133 (1986) 2206.CrossRefGoogle Scholar
  7. 7.
    Z. CAI and C. R. MARTIN, J. Am. Chem. Soc. 111 (1989) 4138.Google Scholar
  8. 8.
    D. M. DAVIS and E. J. PODLAHA, Electrochem. Solid State Lett. 8(2) (2005), D1–D4.CrossRefGoogle Scholar
  9. 9.
    I. ENCULESCU, Z. SIWY, D. DOBREV, C. TRAUTMANN, M. E. TOIMIL MOLARES, R. NEUMANN, K. HJORT, L. WESTERBERG and R. SPOHR, Appl. Phys. A: Mat. Sci. Process. 77 (2003) 751.CrossRefGoogle Scholar
  10. 10.
    G. RIVEROS, H. GOMEZ, A. CORTES, R. E. MAROTTI and E. A. DALCHIELE, Appl. Phys. A 81 (2005) 17.CrossRefGoogle Scholar
  11. 11.
    D. DOBREV, J. VETTER, N. ANGERT and R. NEUMANN, Appl. Physics. A, Mat. Sci. Proces. 69 (2) (1999) 233.CrossRefGoogle Scholar
  12. 12.
    S. K. CHAKARVARTI and J. VETTER, Radiat. Meas. 29(2) (1998) 149.CrossRefGoogle Scholar
  13. 13.
    C. G. J. KOOPAL, B. DE RUITER and R. J. M. NOLTE, J. Chem. Soc., Chem. Commun. (1991) 1691.Google Scholar
  14. 14.
    B. M. I. VAN DER ZANDE, M. R. BOHMER, L. G. J. FOKKINK and C. SCHONENBERGER, J. Phys. Chem.Google Scholar
  15. 15.
    S. KUMAR, S. KUMAR and S. K. CHAKARVARTI, J. Mat. Sci. 39 (2004) 3249.CrossRefGoogle Scholar
  16. 16.
    C. S. BARRETT and T. B. MASSALSKI, Structure Metals Oxford: Pergamon (1980) 204.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Raminder Kaur
    • 1
  • N. K. Verma
    • 1
  • S. Kumar
    • 1
  • S. K. Chakarvarti
    • 2
  1. 1.Thapar Institute of Engineering and TechnologyPatialaIndia
  2. 2.National Institute of TechnologyKurukshetraIndia

Personalised recommendations