Advertisement

Journal of Materials Science

, Volume 41, Issue 13, pp 4247–4250 | Cite as

Spray-drying process for synthesis of nanosized LiMn2O4 cathode

  • H. M. Wu
  • J. P. Tu
  • Y. Z. Yang
  • D. Q. Shi
Article

Abstract

Nanosized LiMn2O4 cathode material was synthesized by a spray-drying process. The calcined LiMn2O4 powder retained a well-define spinel structure and good crystallization. Electrochemical measurements showed that the nanosized LiMn2O4 reached an initial discharge capacity of 131 mAhċg−1 at 1/5 C rate and exhibited a good cycling property at 1 C rate. The results indicate that spray-drying method is a promising method suitable for mass production of nanosized LiMn2O4 with improved electrochemical performances and low cost.

Keywords

Discharge Capacity Ethylene Carbonate Initial Discharge Capacity Powder Morphology Acetylene Carbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. OZAWA, Solid State Ion. 69 (1994) 212.CrossRefGoogle Scholar
  2. 2.
    T. HORIBA, K. HIRONAKA, T. MATSUMURA, T. KAI, M. KOSEKI and Y. MURANAKA, J. Power Sources 119–121 (2003) 893.CrossRefGoogle Scholar
  3. 3.
    D. GUYOMARD and J. M. TARASCON, J. Electrochem. Soc. 139 (1992) 937.CrossRefGoogle Scholar
  4. 4.
    Y. XIA, Y. ZHOU and M. YOSHIO, J. Electrochem. Soc. 144 (1997) 2593.CrossRefGoogle Scholar
  5. 5.
    Y. Y. XIA, N. KUMADA, and M. YOSHIO, J. Power Sources 90 (2000) 135.CrossRefGoogle Scholar
  6. 6.
    Y. M. HON, S. P. LIN, K. Z. FUNG and M. H. HON, J. Eur. Ceram. Soc. 22 (2002) 653.CrossRefGoogle Scholar
  7. 7.
    Y. ZHANG, H. C. SHIN, J. DONG, and M. L LIU, Solid State Ion. 171 (2004) 25.CrossRefGoogle Scholar
  8. 8.
    C. Y. WAN, Y. NULI, J. ZHUANG, and Z. JIANG, Mater. Lett. 56 (2002) 357.CrossRefGoogle Scholar
  9. 9.
    M. R. PALACIN, G. ROUSSE, M. MORCRETTE, L. DUPONT, C. MASQUELIER, Y. CHABRE, M. HERVIEU and J. M. TARASCON, J. Power Sources 97/98 (2001) 398.CrossRefGoogle Scholar
  10. 10.
    J. SUGIYAMA, T. ATSUMI, T. HIOKI, S. NODA and N. KAMEGASHIRA, J. Alloys Comp. 235 (1996) 163.CrossRefGoogle Scholar
  11. 11.
    W. LIU, K. KOWAL and G. C. FARRINGTON, J. Electrochem. Soc. 143 (1996) 3590.CrossRefGoogle Scholar
  12. 12.
    W. LIU, G. C. FARRINGTON, F. CHAPUT and B. DUNN, J. Electrochem. Soc. 143 (1996) 879.CrossRefGoogle Scholar
  13. 13.
    H. M. WU, J. P. TU, Y. F. YUAN, Y. LI, X. B. ZHAO and G. S. CAO, Scripta Mater. 52 (2005) 513.CrossRefGoogle Scholar
  14. 14.
    D. I. SIAPKAS, C. L. MITSAS, I. SAMARAS, T. T. ZORDA, G. MOUMOUZIAS, D. TERZIDIS, E. HATZIKRANIOTIS, S. KOKKOU, A. VOULGAROPOULOS and K. M. PARASKEVOPOULOS, J. Power Sources 72 (1998) 22.CrossRefGoogle Scholar
  15. 15.
    Y. SUN, Z. WANG, L. CHEN and X. HUANG, J. Electrochem. Soc. 150 (2003) A1294.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations