Advertisement

Journal of Materials Science

, Volume 41, Issue 8, pp 2457–2464 | Cite as

Preparation of mesoporous TiO2 by the sol-gel method assisted by surfactants

  • R. Linacero
  • J. Aguado-Serrano
  • M. L. Rojas-Cervantes
Article

Abstract

Mesoporous titania was obtained by gelation of tetraisopropyl orthotitanate in aqueous or alcoholic solutions with addition of a cationic or anionic surfactant. The gels were dried and calcined to obtain the oxides. The dried samples and the oxides were characterized by thermal analysis, N2- adsorption measurements, infrared spectroscopy, X-ray diffraction and titration with n-butylamine. The effect of the type of surfactant, the chain length of the surfactant and the synthesis method on the textural and surface characteristics of the oxides obtained has been investigated. Cationic surfactants such as dodecyltrimethylammoniumbromide and cetyltrimethylammoniumbromide are effective in controlling the pore size and in increasing the pore volume and the surface area. On the contrary, the sodium dodecylsulphate employed as an anionic surfactant is not incorporated to the hydrous titanium oxide network. The use of a surfactant in the preparation enhances the acid strength of the surface sites of the titanium oxide formed.

Keywords

TiO2 Surfactant Infrared Spectroscopy Pore Volume Cationic Surfactant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. BRINKER and G. SCHERER, Sol-Gel Science. Academic Press, New York, 1989.Google Scholar
  2. 2.
    M. A. CAUQUI and J. M. RODRIGUEZ-IZQUIERDO, J. Non-Cryst. Solids 147&148 (1992) 724.CrossRefGoogle Scholar
  3. 3.
    R. D. GONZÁLEZ, T. LÖPEZ and R. GÖMEZ, Catal. Today (1997) 293.Google Scholar
  4. 4.
    J. B. MILLER and E. I. KO, Catal. Today (1997) 269.Google Scholar
  5. 5.
    O. P. KRIVORUCHKO, Stud. Surf. Sci. Catal. 118 (1998) 593.CrossRefGoogle Scholar
  6. 6.
    M. L. ROJAS-CERVANTES, R. M. MARTÍN-ARANDA, A. J. LÖPEZ-PEINADO and J. DE D. LÖPEZ-GONZÁLEZ, J. Mater. Sci. 29 (1994) 3743.CrossRefGoogle Scholar
  7. 7.
    M. L. ROJAS-CERVANTES, A. J. LÖPEZ-PEINADO, J. DE D. LÖPEZ-GONZÁLEZ and F. CARRASCO-MARÍN, ibid. 31 (1996) 437.CrossRefGoogle Scholar
  8. 8.
    F. VICTOR, J. STONE and R. J. DAVIS, Chem. Mater. 10 (1998) 1468.CrossRefGoogle Scholar
  9. 9.
    N. NEGISHI, K. TAKEUCHI and T. IBUSUKI, Appl. Surf. Sci. 121–122 (1997) 417.CrossRefGoogle Scholar
  10. 10.
    M. TAKAHASHI, K. MITA and H. TOYUKI, J. Mater. Sci. 24 (1989) 243.CrossRefGoogle Scholar
  11. 11.
    C. T. KRESGE, M. E. LEONOWICCZ, W. J. ROTH, J. C. VARTULLO and J. S. BECK, Nature 359 (1992) 710.CrossRefGoogle Scholar
  12. 12.
    D. M. ANTONELLI, Microp. Mesop. Mater. 30(2–3) (1999) 315.CrossRefGoogle Scholar
  13. 13.
    U. CIESLA, S. SCHACHT and G. D. STUCKY, Angew. Chem. Int. Ed. Engl. 35 (1996) 541.CrossRefGoogle Scholar
  14. 14.
    P. LIU, T. LIU and A. SAYARI, Chem. Commun. (1997) 557.Google Scholar
  15. 15.
    G. S. ATTARD, Science 278 (1997) 838.CrossRefGoogle Scholar
  16. 16.
    M. J. MACLACHLAN, N. COOMBS, R. L. BEDARD, S. WHITE, L. K. THOMPSON and G. A. OZIN, J. Am. Chem. Soc. 121 (51) (1999) 12005.CrossRefGoogle Scholar
  17. 17.
    J. S. REDDY and A. SAYARI, Catal. Lett. 38 (1996) 541.Google Scholar
  18. 18.
    D. M. ANTONELLI and Y. J. YING, Angew. Chem. Int. Ed. Eng. 34 (1995) 2014.CrossRefGoogle Scholar
  19. 19.
    Y. Q. WANG, S. G. CHEN, X. H. TANG, O. PALCHIK, A. ZABAN, Y. KOLTYPIN and A. GEDANKEN, J. Mater. Chem. 11 (2001) 521.CrossRefGoogle Scholar
  20. 20.
    N. ULAGAPPAN and C. N. R. RAO, Chem. Commun. (1996) 1686.Google Scholar
  21. 21.
    D. KHUSHALANI, G. A. OZIN and A. KUPERMAN, J. Mater. Chem. 7 (1999) 1491.CrossRefGoogle Scholar
  22. 22.
    D. T. ON, Langmuir 15 (1999) 8561.CrossRefGoogle Scholar
  23. 23.
    M. M. YUSUF, H. IMAI and H. HIRASHIMA, J. Sol-Gel Sci. Technol. 28 (2003) 97.CrossRefGoogle Scholar
  24. 24.
    M. J. HUDSON and J. A. KNOWLES, J. Mater. Chem. 6(11) (1996) 89.CrossRefGoogle Scholar
  25. 25.
    G. PACHECO, E. ZHAO, A. GARCÁA, A. SKLYAROR and J. J. PRIFIAT, ibid. 8(1) (1998).Google Scholar
  26. 26.
    F. BABONNEAU, L. LEITE and S. FONTLUPT, ibid. 9 (1999) 175.CrossRefGoogle Scholar
  27. 27.
    E. P. BARRET, L. G. JOYNET and P. P. HALENDA, J. Am. Chem. Soc. 73 (1951) 373.CrossRefGoogle Scholar
  28. 28.
    R. CID and G. PECCHI, Appl. Catal. 14(1–3) (1985).Google Scholar
  29. 29.
    M. DEEBA and W. K. HALL, J. Catal. 60(3) (1979) 417.CrossRefGoogle Scholar
  30. 30.
    H. ARMENDARIZ, B. COQ, D. TICHIT, R. DUTARTRE and F. FIGUERAS, ibid. 173 (1998) 345.CrossRefGoogle Scholar
  31. 31.
    K. NAKAMOTO, in “Infrared and Raman Spectra of Inorganic and Coordination Compounds”, (Wiley: New York, 4thedn)Google Scholar
  32. 32.
    P. SCHERRER, Nachr. Ges. Wiss. Gottingen (1918) 96–100.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • R. Linacero
    • 1
  • J. Aguado-Serrano
    • 1
  • M. L. Rojas-Cervantes
    • 1
  1. 1.Departamento de Química Inorgánica y Química TécnicaFacultad de Ciencias, UNEDMadridSpain

Personalised recommendations