Advertisement

Journal of Materials Science

, Volume 41, Issue 8, pp 2465–2470 | Cite as

Synthesis and characterization of high surface area molybdenum nitride

  • R. N. Panda
  • S. Kaskel
Article

Abstract

The synthesis of high surface area γ-Mo2N materials using the nitridation of oxide precursors MoO3, H2MoO5, and H2MoO5·H2O with ammonia at 650°C is described. H2MoO5 and its hydrated form were obtained from the reaction of MoO3 and diluted H2O2. The materials were characterized by means of X-ray powder diffraction, thermal analysis and nitrogen physisorption. Directly after the preparation, the nitride materials were subjected to different processing conditions: (1) contact to air, (2) inert gas or (3) treated with 1% O2(g)/N2(g) gas mixture (Passivation). The synthesis and passivation conditions critically affect the specific surface area of the final product. By means of XRD a minor quantity of MoO2 was detected in most of the products. The highest specific surface area of the nitrides was 158.4 m2/g for γ-Mo2N materials using H2MoO5·H2O as the precursor. The high specific surface area corresponds to an average particle diameter of 4 nm, assuming a cubic morphology of the nanocrystals (dp = 6/ρSBET, ρ = 9.5 g/cc). The nitrogen physisorption isotherms of γ-Mo2N are of type IV, but pore sizes and diameters differ significantly depending on the synthesis conditions due to different defect structures of the intermediates generated in the course of the topotactic transformation of the oxides to nitrides.

Keywords

Molybdenum Nitride Thermal Analysis MoO3 High Surface Area 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. FURIMSKY, Appl. Catal. A 240 (2003) 1.CrossRefGoogle Scholar
  2. 2.
    S. RAMANATHAN and S. T. OYAMA, J. Phys. Chem. 99 (1995) 16365.CrossRefGoogle Scholar
  3. 3.
    E. J. MARKEL and J. W. VANZEE, J. Catal. 126 (1990) 643.CrossRefGoogle Scholar
  4. 4.
    H. ABE, T. K. CHEUNG and A. T. BELL, Catal. Lett. 21 (1993) 11.CrossRefGoogle Scholar
  5. 5.
    J. G. CHOI, J. R. BRENNER, C. W. COLLING, B. G. DEMCZYK, J. L. DUNNING and L. T. THOMPSON, Catal. Today. 15 (1992) 201.CrossRefGoogle Scholar
  6. 6.
    L. VOLPE and M. BOUDART, J. Solid State Chem. 59 (1985) 332.CrossRefGoogle Scholar
  7. 7.
    S. T. OYAMA, Catal. Today. 15 (1992) 179.CrossRefGoogle Scholar
  8. 8.
    A. GUERRERO-RUIZ, Q. XIN, Y. J. ZHANG, A. MAROTO-VALIENTE and I. RODRIGUEZ-RAMOS, Langmuir. 15 (1999) 4927.CrossRefGoogle Scholar
  9. 9.
    S. Z. LI and J. S. LEE, J. Catal. 178 (1998) 119.CrossRefGoogle Scholar
  10. 10.
    S. Z. LI and J. S. LEE, J. Catal. 173 (1998) 134.CrossRefGoogle Scholar
  11. 11.
    T. MIYAO, K. OSHIKAWA, S. OMI and M. NAGAI, Stud. Surf. Sci. Catal. 106 (1997) 255.CrossRefGoogle Scholar
  12. 12.
    M. NAGAI, Y. GOTO, O. UCHINO and S. OMI, Catal. Today. 45 (1998) 335.CrossRefGoogle Scholar
  13. 13.
    H. K. PARK, J. K. LEE, J. K. YOO, E. S. KO, D. S. KIM and K. L. KIM, Appl. Catal. A 150 (1997) 21.CrossRefGoogle Scholar
  14. 14.
    J. TRAWCZYNSKI, Catal. Today. 65 (2001) 343.CrossRefGoogle Scholar
  15. 15.
    S. T. WANG, X. WANG, Z. D. ZHANG and Y. T. QIAN, J. Mater. Sci. 38 (2003) 3473.CrossRefGoogle Scholar
  16. 16.
    Y. KURUSU, Bull. Chem. Soc. Jpn. 54 (1981) 293.CrossRefGoogle Scholar
  17. 17.
    F. ROUQUEROL, J. ROUQUEROL and K. SING, Adsorption by Powders and Porous Solids, Academic Press, London, (1999).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute of NanotechnologyForschungszentrum KarlsruheGermany
  2. 2.Inorganic Chemistry DepartmentTechnical University of DresdenDresdenGermany

Personalised recommendations