Journal of Materials Science

, Volume 41, Issue 5, pp 1571–1577 | Cite as

Effect of O2 on copper-water vapor interaction near critical point

  • Y. Jin
  • H. Kato
  • I. R. Korablova
  • K. Ioku
  • N. Yamasaki


A significant weight loss of copper plate was observed after copper-water vapor interaction near critical point. This leads to the acceleration of the ceramic layer formation on SUS surface during granite-water vapor interaction in the presence of copper. In this paper, we have determined the chemical state of copper at which the mass transfer takes place through reaction with H2 and O2+N2 gas mixture at the different O2 amount. Obtained results indicate that the weight loss of copper plate occurs at Cu2O (+1) state due to a complex processes. The morphology of copper species on the surface of mesh and granite suggests that the Cu2O was dissolved in water vapor and recrystallized on the surface of mesh and granite. Copper species were characterized by X-ray diffraction(XRD), scanning electron microscopy (SEM) equipped with an energy dispersive X-ray (EDX).


Copper Scanning Electron Microscopy Mass Transfer Water Vapor Cu2O 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. CRAW, C. P. CHAMBERLAIN, P. K. ZEILTLER AND P. O. KOONS, Chem. Geol. 142 (1997) 11.CrossRefGoogle Scholar
  2. 2.
    J. R. HUNT, N. SITAR AND K. S. UDELL, Water Resour. Res. 24 (1988) 1259.Google Scholar
  3. 3.
    R. W. HENLEY, A. H. TRUSEDELL AND P. B. BARTON, Rev. Econ. Geol. 1 (1984) 267.Google Scholar
  4. 4.
    D. CRAW, P. O. KOONS, T. HORTON AND C. P. CHAMBERLAIN, Tectonophysics 348 (2002) 135.CrossRefGoogle Scholar
  5. 5.
    N. YAMASAKI, I.R. KORABLOVA AND S.F. KORABLOV, J. Ceram. Soc. JPN. 111 (2003) 242.Google Scholar
  6. 6.
    N. YAMASAKI, I.R. KORABLOVA AND S.F. KORABLOV, J. Am. Ceram. Soc. 86 (2003) 1061.Google Scholar
  7. 7.
    N. YAMASAKI, I.R. KORABLOVA AND S.F. KORABLOV, J. Mater. Sci. Lett. 22 (2003) 821.CrossRefGoogle Scholar
  8. 8.
    R. HAUGSRUD, J.ELECTROCHEM. SOC. 149 (2002) B14.Google Scholar
  9. 9.
    M.D. BHARADWAJ AND J.C. YANG, Scripta Mater. 44 (2001) 2557.Google Scholar
  10. 10.
    F. J. POCOCK AND J. F. STEWART, J. Eng. Pow. JAN (1963) 33.Google Scholar
  11. 11.
    K. SUE, Y. HAKUTA, R. L. SMITH, JR., T. ADSCHIRI AND K. ARAI, J. Chem. Eng. Data 44 (1999) 1422.CrossRefGoogle Scholar
  12. 12.
    K. YANAGISAWA, Q. FENG, K. IOKU AND N. YAMASAKI, J. Cryst. Growth. 163 (1996) 285.CrossRefGoogle Scholar
  13. 13.
    R.F. TYLECOTE, J. I. MET. 81 (1952--53) 681.Google Scholar
  14. 14.
    M. LENGLET, K. KARTOUNI, J. MACHEFERT, J. M. CAUDE, P. STEINMETZ, E. BEAUPREZ, J. HEINRICH AND N. CELATI, Mater. Res. Bull. 30 (1995) 393.CrossRefGoogle Scholar
  15. 15.
    J.-H. PARK AND K. NATESAN, Oxid. Met. 39 (1993) 411.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Y. Jin
    • 1
  • H. Kato
    • 2
  • I. R. Korablova
    • 2
  • K. Ioku
    • 2
  • N. Yamasaki
    • 2
  1. 1.Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Graduate School of Environmental StudiesTohoku UniversitySendaiJapan

Personalised recommendations