Advertisement

Journal of Materials Science

, Volume 41, Issue 8, pp 2359–2364 | Cite as

Intermetallic compounds evolution between lead-free solder and cu-based lead frame alloys during isothermal aging

  • Yanghua Xia
  • Xiaoming Xie
  • Xiaoming Xie
  • Chuanyan Lu
Article

Abstract

This paper investigated the intermetallic compounds (IMCs) formation between SnAgCu solder and four Cu-based lead frame alloys during reflow soldering and isothermal aging. Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX) were used to study the cross-sectional microstructure and stoichiometric information. Optical Microscope (OM) was used to measure the mean thickness of IMCs. It was found that Ni and Sn trace element have important influences on the interfacial reactions. After soldering, for the case of Sn-Ag-Cu solder on Cu-Sn-Cr-Zn, Cu-Sn-P and Cu-Fe-P-Zn-Pb, an island type Cu6Sn5 and a thin Cu3Sn layer were formed at the interface. However, for the case on Cu-Ni-Si-Mg alloy, no Cu3Sn was detected and only a layer of ternary (Cu,Ni)6Sn5 was confirmed and some Cu6Sn5 particles was observed to disperse in the bulk solder. The top morphology of IMCs was also characterized after the solder was selectively etched away. The IMCs on the Cu-Ni-Si-Mg showed long rod-like shape, whilst the IMCs on the other three alloys appeared round. After different duration of aging at 150°C, all the IMCs grew thicker and the grain size became larger. The rod-like IMCs on Cu-Ni-Si-Mg gradually transformed into round shape and it was relatively smaller compared to that on the other three alloys. Moreover, the growth rate of IMCs on Cu-Ni-Si-Mg is the fastest among the four alloys.

Keywords

Intermetallic Compound Energy Dispersive Interfacial Reaction Important Influence Round Shape 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. N. TU, A. M. GUSAK and M. LI, J. Appl. Phys. 93 (2003) 1335.CrossRefGoogle Scholar
  2. 2.
    K. SUGANUMA, Curr. Opin. Solid. St. Mat. 5 (2001) 55.CrossRefGoogle Scholar
  3. 3.
    B. RICHARDS and K. NIMMO, in “An analysis of the current status of lead-free soldering: update 2000”(London: DTI, 2000).Google Scholar
  4. 4.
    M. ABTEW and G. SELVADURAY, Mat. Sci. Eng. R. 27 (2000) 95.CrossRefGoogle Scholar
  5. 5.
    K. ZENG, V. VUORINEN and J. K. KIVILAHTI, IEEE Transactions on Electronics Packaging Manufacturing 25 (2002) 162.CrossRefGoogle Scholar
  6. 6.
    M. LI, F. ZHANG, W. T. CHEN, K. ZENG, K. N. TU and H. BALKAN, J. Mater. Res. 17 (2002) 1612.CrossRefGoogle Scholar
  7. 7.
    C. S. CHI, H. S. CHANG, K. C. HSIEH and C. L. CHUNG, J. Electron. Mater. 31 (2002) 1203.CrossRefGoogle Scholar
  8. 8.
    A. ZRIBI, A. CLARK, L. ZAVALIJ, P. BORGESEN and E. J. COTTS, ibid. 30 (2001) 1157.CrossRefGoogle Scholar
  9. 9.
    W. J. PLUMBRIDGE, C. R. GAGG and S. PETERS, ibid. 30 (2001) 1178.CrossRefGoogle Scholar
  10. 10.
    K. S. KIM, S. H. HUH and K. SUGANUMA, J. Alloy. Compd. 352 (2003) 226.CrossRefGoogle Scholar
  11. 11.
    H. L. J. PANG, K. H. TAN, X. Q. SHI and Z. P. WANG, Mat. Sci. Eng. A 307 (2001) 42.CrossRefGoogle Scholar
  12. 12.
    S. NURMI, J. SUNDELIN, E. RISTOLAINEN and T. LEPISTO, Microelectron. Reliab. 44 (2004) 458.CrossRefGoogle Scholar
  13. 13.
    H. T. LEE, M. H. CHEN, H. M. JAO and T. L. LIAO, Mat. Sci. Eng. A 358 (2003) 134.CrossRefGoogle Scholar
  14. 14.
    F. HUA, Z. Q. MEI, H. HOLDER and J. GLAZER, 41st Electronic Components and Technology Conference (San Jose, CA, USA, May 18–21, 1997) p. 1110.Google Scholar
  15. 15.
    F. X. HUANG, G. H. SUZUKI, X. Y. LI and J. S. MA, 5th International Conference on Electronic Packaging Technology (Shanghai, China, Oct 28-Nov 1, 2003) p. 443.Google Scholar
  16. 16.
    J. W. JANG, P. G. KIM, K. N. TU, D. R. FREAR and P. THOMPSON, J. Appl. Phys. 85 (1999) 8456.CrossRefGoogle Scholar
  17. 17.
    K. JUNG and H. CONRAD, J. Electron. Mater. 30 (2001) 1308.CrossRefGoogle Scholar
  18. 18.
    P. T. VIANCO, J. A. REJENT and P. F. HLAVA, ibid. 33 (2004) 991.CrossRefGoogle Scholar
  19. 19.
    T. M. KORHONEN, P. SU, S. J. HONG, M. A. KORHONEN and C. Y. LI, ibid. 28 (1999) 1146.CrossRefGoogle Scholar
  20. 20.
    Idem., ibid. 29 (2000) 1194.CrossRefGoogle Scholar
  21. 21.
    JUNLING CHANG, Doctoral Thesis, Chinese Academy of Science, People Republic of China (2005).Google Scholar
  22. 22.
    W. K. CHOI and H. M. LEE, J. Electron. Mater. 29 (2000) 1207.CrossRefGoogle Scholar
  23. 23.
    X. DENG, G. PIOTROWSKI, J. WILLIAMS and N. CHAWLA, ibid. 32 (2003) 1403.CrossRefGoogle Scholar
  24. 24.
    K. N. TU and K. ZENG, Mat. Sci. Eng. R. 34 (2001) 1.CrossRefGoogle Scholar
  25. 25.
    K. H. PRAKASH and T. SRITHARAN, J. Electron. Mater. 32 (2003) 939.CrossRefGoogle Scholar
  26. 26.
    P. L. WU, M. K. HUANG, C. Y. LEE and S. H. TZAN, ibid. 33 (2004) 157.CrossRefGoogle Scholar
  27. 27.
    S. W. CHEN, S. H. WU and S. W. LEE, ibid. 32 (2003) 1188.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Yanghua Xia
    • 1
  • Xiaoming Xie
    • 1
    • 2
  • Xiaoming Xie
    • 2
  • Chuanyan Lu
    • 2
  1. 1.Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiPeople’s Republic of China
  2. 2.DaimlerChrysler SIM Technology Co., Ltd.ShanghaiPeople’s Republic of China

Personalised recommendations