Advertisement

Journal of Materials Science

, Volume 42, Issue 18, pp 7939–7949 | Cite as

Synthesis of diamond from a chlorinated organic substance under hydrothermal conditions

  • Sergiy KorablovEmail author
  • Kazunori Yokosawa
  • Taku Sasaki
  • Dmytro Korablov
  • Akira Kawasaki
  • Koji Ioku
  • Emile H. Ishida
  • Nakamichi Yamasaki
Article

Abstract

Hydrothermal growth of diamond particles and films was achieved during interaction of a liquid organic precursor (C2H3Cl3) and 10 M NaOH in the presence of diamond or cubic BN seeds at the temperature 300 °C and 1 GPa pressure. Synthesized diamond was thoroughly characterized by TG-DTA, SEM, EDX, TEM, Raman spectroscopy and had (220) preferable orientation according to XRD pattern in the case of the film.

Keywords

Natural Diamond Diamond Growth Diamond Formation Hydrothermal Growth Hydrothermal Carbon 

Notes

Acknowledgements

We thank M.R. Davidson (CASE Western Reserve University) for help for preparation of this paper and Prof. Yury Gogotsi (Drexel University) for helpful discussion and editing the manuscript. S. Korablov was supported by a JSPS Research Fellowship.

References

  1. 1.
    Bundy FP, Hall HT, Strong HM, Wentorf RH (1955) Nature 176:51CrossRefGoogle Scholar
  2. 2.
    Angus JC, Hayman CC (1988) Science 241:913CrossRefGoogle Scholar
  3. 3.
    Burkhard G, Dan K, Tanabe Y, Sawaoka AB, Yamada K (1994) Jpn J Appl Phys 33:L876CrossRefGoogle Scholar
  4. 4.
    Regueiro MN, Monceau P, Hadeau J-L (1992) Nature 355:237CrossRefGoogle Scholar
  5. 5.
    Merkle RC, Freitas RA (2003) J Nanosci Nanotechnol 3:1CrossRefGoogle Scholar
  6. 6.
    Gogotsi YG, Welz S, Ersoy DA, McNallan MJ (2001) Nature 441:283CrossRefGoogle Scholar
  7. 7.
    Gogotsi YG, Kofstad P, Yoshimura M, Nickel KG (1996) Diamond Relat Mater 5:151CrossRefGoogle Scholar
  8. 8.
    DeVries RC (1997) Nature 385:485CrossRefGoogle Scholar
  9. 9.
    Ravi KV (1995) Diamond Relat Mater 4(4):243CrossRefGoogle Scholar
  10. 10.
    Kim J-S, Kappelli MA (1995) Surf Coat Tech 76–77:791CrossRefGoogle Scholar
  11. 11.
    Saito Y, Sato K, Tanaka H, Fujta K, Matuda S (1988) J Mater Sci 23:842. DOI: 10.1007/BF01153976CrossRefGoogle Scholar
  12. 12.
    Dobrzhinetskaya LF, Braun TV, Sheshikel GG, Podkuiko YA (1994) Tectonophysics 233:293CrossRefGoogle Scholar
  13. 13.
    DeCorte K, Cartigny P, Shatsky VS, Sobolev NV, Javoy M (1998) Geochim Cosmochim Acta 62(23/24):3765CrossRefGoogle Scholar
  14. 14.
    Dobrzhinetskaya LF, Green HW, Wescheer M, Darus M, Wang Y-C, Massone H-J, Stöckhert B (2003) Earth Planet Sci Lett 210:399CrossRefGoogle Scholar
  15. 15.
    Dobrzhinetskaya LF, Green HW, Mitchell TE, Diskerson RM (2001) Geology 29(3):263CrossRefGoogle Scholar
  16. 16.
    Stöckhert B, Dnyster J, Trepmann C, Massone H-J (2001) Geology 29(5):391CrossRefGoogle Scholar
  17. 17.
    Cartigny P, DeCorte K, Shatsky VS, Ader M, DePaepe P, Sobolev NV, Javoy M (2001) Chem Geol 176:265CrossRefGoogle Scholar
  18. 18.
    DeVries RC, Roy R, Somiya S, Yamada S (1994) Trans Mat Res Soc Jpn 19B(6):641Google Scholar
  19. 19.
    Zhao X-Z, Roy R, Cherian KA, Badzian A (1997) Nature 385:513CrossRefGoogle Scholar
  20. 20.
    Szymanski A, Abgarowicz E, Bacon A, Niedbalska A, Salacinski R, Sentek J (1995) Diamond Relat Mater 4:234CrossRefGoogle Scholar
  21. 21.
    Szymanski A (1996) J Chem Vap Depos 4:278Google Scholar
  22. 22.
    Korablov S, Yokozawa K, Tohji K, Yamasaki N (2004) Trans Mat Res Soc Jpn 29(5):2371Google Scholar
  23. 23.
    Yamasaki N, Korablov S, Yokosawa K (2002) In: Proceedings of the 5th international conference on the solvo-thermal reactions, East Brunswisk, NJ, 22–26 July 2002, p 371Google Scholar
  24. 24.
    Davydov VA, Rakhmanina AV, Agafonov V, Narynbetov B, Boudou J-P, Szwarc H (2004) Carbon 42:261CrossRefGoogle Scholar
  25. 25.
    Yamasaki N, Yasui T, Matsuoka M (1980) Environ Sci Technol 14:550CrossRefGoogle Scholar
  26. 26.
    Sato H, Uematsu K, Watanabe K, Saul A, Wagner W (1988) J Phys Chem Ref Dat 17:1439CrossRefGoogle Scholar
  27. 27.
    Tsubota T, Hirabayashi O, Ida S, Nagaoka S, Nagata M, Matsumoto Y, Kusakabe K, Morooka S (2001) Chem Soc Jpn 11:631Google Scholar
  28. 28.
    Kotsuki H, Nishizawa H, Kitagawa S, Ochi M, Yamasaki N, Matsuoka K, Tokoroyama T (1979) Bull Chem Soc Jpn 52:544CrossRefGoogle Scholar
  29. 29.
    Ku C-H, Wu J-J (2004) Carbon 42:2201CrossRefGoogle Scholar
  30. 30.
    Mallika K, Komanduri R (1999) Wear 224:245CrossRefGoogle Scholar
  31. 31.
    Welz S, Gogotsi Y, McNallan M (2003) J Appl Phys 93:4207CrossRefGoogle Scholar
  32. 32.
    Kozai Y, Arima M (2005) Am Mineral 90:1759CrossRefGoogle Scholar
  33. 33.
    Moore M (1985) Ind Diamond Rev 45(2):67Google Scholar
  34. 34.
    Yu Z, Flodström (1997) Diamond Relat Mater 6:81CrossRefGoogle Scholar
  35. 35.
    Mendelssohn MJ, Milledge HJ (1995) Int Geol Rev 37(4):285CrossRefGoogle Scholar
  36. 36.
    Fritsh E, Moore M, Rondeau B, Waggett RG (2005) J Crystal Growth 280:279CrossRefGoogle Scholar
  37. 37.
    Kanda H, Ohsawa T, Fukunaga O, Sunagawa I (1989) J Crystal Growth 94(1):115CrossRefGoogle Scholar
  38. 38.
    Palyanov YuN, Sokol AG, Borzdov YuM, Khokhryakov AF, Shatsky AF, Sobolev NV (1999) Diamond Relat Mater 8:1118CrossRefGoogle Scholar
  39. 39.
    Fernandes AJS, Silva VA, Carrapichano JM, Dias GR, Silva RF, Costa FM (2001) Diamond Relat Mater 10:803CrossRefGoogle Scholar
  40. 40.
    Malcher V, Mrška A, Kromka A, Šatka A, Janík J (2002) Curr Appl Phys 2:201CrossRefGoogle Scholar
  41. 41.
    Teraji T, Mitani S, Wang C, Ito I (2002) J Crystal Growth 235:287CrossRefGoogle Scholar
  42. 42.
    Sternberg M, Kaukonen M, Nieminen RM, Frauenheim Th (2001) Phys Rev B 63:165414CrossRefGoogle Scholar
  43. 43.
    Chu CJ, Hayge RH, Margrave JL, D’evelyn MP (1992) Appl Phys Lett 61(12):1393CrossRefGoogle Scholar
  44. 44.
    Chu CJ, D’Evelyn MP, Hayge RH, Margrave JL (1991) J Appl Phys 70(3):1695CrossRefGoogle Scholar
  45. 45.
    Lu FX, Liu JM, Chen GC, Tang WZ, Li CM, Song JH, Tong JM (2004) Diamond Relat Mater 13:533CrossRefGoogle Scholar
  46. 46.
    Yamasaki N (2003) J Cer Soc Jpn 111(10):709CrossRefGoogle Scholar
  47. 47.
    Erasmus RM, Comins JD, Fish ML (2000) Diamond Relat Mater 9:600CrossRefGoogle Scholar
  48. 48.
    Ferrari AC, Robertson J (2000) In: Proceedings of materials research society symposium, vol 593, p 299Google Scholar
  49. 49.
    Korablov S, Yamasaki N, Tohji K, Yokosawa K (2003) In: Proceedings of annual meeting of the ceramic society of Japan, Tokyo, 22–24 March 2003, p 47Google Scholar
  50. 50.
    Fang Z, Smith RL, Inomata H, Arai K (2000) J Supercrit Fluid 16:207CrossRefGoogle Scholar
  51. 51.
    Wu J-J, Ku C-H, Wong T-C, Wu C-T, Chen K-H, Chen L-C (2005) Thin Sol Film 473(1):24CrossRefGoogle Scholar
  52. 52.
    Yamasaki N, Korablov S, Yokosawa K (2002) In: Proceedings of conference of the Mining and Materials Processing Institute of Japan, Chiba, 28–30 March 2002, p 136Google Scholar
  53. 53.
    Redfern PC, Horner DA, Curtiss LA, Gruen DM (1996) J Phys Chem 100:11654CrossRefGoogle Scholar
  54. 54.
    Korablov S, Yamasaki N, Tohji K, Yokosawa K, Korablov D (2006) Mater Lett 60(25–26):3041CrossRefGoogle Scholar
  55. 55.
    Mallika K, DeVries RC, Komanduri R (1999) Thin Sol Film 339:19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sergiy Korablov
    • 1
    Email author
  • Kazunori Yokosawa
    • 1
  • Taku Sasaki
    • 1
  • Dmytro Korablov
    • 1
  • Akira Kawasaki
    • 2
  • Koji Ioku
    • 1
  • Emile H. Ishida
    • 1
  • Nakamichi Yamasaki
    • 1
  1. 1.Department of Environmental Studies, Graduate School of Environmental StudiesTohoku UniversitySendaiJapan
  2. 2.Department of Materials Processing, Graduate School of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations