Journal of Materials Science

, Volume 42, Issue 17, pp 7461–7466 | Cite as

RETRACTED ARTICLE: Determination of dopant of ceria system by density functional theory

  • K. Muthukkumaran
  • Roshan Bokalawela
  • Tom Mathews
  • S. SelladuraiEmail author


Oxides with the cubic fluorite structure, e.g., ceria (CeO2), are known to be good solid electrolytes when they are doped with cations of lower valence than the host cations. The high ionic conductivity of doped ceria makes it an attractive electrolyte for solid oxide fuel cells, whose prospects as an environmentally friendly power source are very promising. In these electrolytes, the current is carried by oxygen ions that are transported by oxygen vacancies, present to compensate for the lower charge of the dopant cations. Ionic conductivity in ceria is closely related to oxygen-vacancy formation and migration properties. A clear physical picture of the connection between the choice of a dopant and the improvement of ionic conductivity in ceria is still lacking. Here we present quantum-mechanical first-principles study of the influence of different trivalent impurities on these properties. Our results reveal a remarkable correspondence between vacancy properties at the atomic level and the macroscopic ionic conductivity. The key parameters comprise migration barriers for bulk diffusion and vacancy–dopant interactions, represented by association (binding) energies of vacancy–dopant clusters. The interactions can be divided into repulsive elastic and attractive electronic parts. In the optimal electrolyte, these parts should balance. This finding offers a simple and clear way to narrow the search for superior dopants and combinations of dopants. The ideal dopant should have an effective atomic number between 61 (Pm) and 62 (Sm), and we elaborate that combinations of Nd/Sm and Pr/Gd show enhanced ionic conductivity, as compared with that for each element separately.


Ceria Ionic Conductivity Solid Oxide Fuel Cell Near Neighbor High Ionic Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Inaba H, Tagawa H (1996) Solid State Ionics 83:1CrossRefGoogle Scholar
  2. 2.
    Steele BCH, Heinzel A (2001) Nature 414:345CrossRefGoogle Scholar
  3. 3.
    Hibino T, Hashimoto A, Inoue T, Tokuno J-I, Yoshida S-I, Sano M (2000) Science 288:2031CrossRefGoogle Scholar
  4. 4.
    Park S, Vohs JM, Gorte RJ (2000) Nature 404:265CrossRefGoogle Scholar
  5. 5.
    Kharton VV, Marques FMB, Atkinson A (2004) Solid State Ionics 174:135CrossRefGoogle Scholar
  6. 6.
    Kim DJ (1989) J Am Ceram Soc 72:1415CrossRefGoogle Scholar
  7. 7.
    Kilner J (1983) Solid State Ionics 8:201CrossRefGoogle Scholar
  8. 8.
    Kilner J, Brook RJ (1983) Solid State Ionics 6:237CrossRefGoogle Scholar
  9. 9.
    Andersson DA (2006) Proc Ac USA 103:3518CrossRefGoogle Scholar
  10. 10.
    Schewartz K (2006) Proc Nat Ac USA 102:3497Google Scholar
  11. 11.
    Faber J, Geoffroy C, Roux A, Sylvestre A, Abélard P (1989) Appl Phys A 49:225CrossRefGoogle Scholar
  12. 12.
    Gerhardt-Anderson R, Nowick AS (1981) Solid State Ionics 5:547CrossRefGoogle Scholar
  13. 13.
    Wang DY, Park DS, Griffith J, Nowick AS (1981) Solid State Ionics 2:95CrossRefGoogle Scholar
  14. 14.
    Butler V, Catlow CRA, Fender BEF, Harding JH (1983) Solid State Ionics 8:109CrossRefGoogle Scholar
  15. 15.
    Balducci G, Kaspar J, Fornasiero P, Graziani M (2000) Chem Mater 12:677CrossRefGoogle Scholar
  16. 16.
    Minervini L, Zacate MO, Grimes RW (1999) Solid State Ionics 116:339CrossRefGoogle Scholar
  17. 17.
    Yoshida H, Inagaki T, Miura K, Inaba M, Ogumi Z (2003) Solid State Ionics 160:109CrossRefGoogle Scholar
  18. 18.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  19. 19.
    Berry RS, Rice SA, Ross J (2000) Physical chemistry. Oxford University Press, Oxford, pp 512–513Google Scholar
  20. 20.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  21. 21.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671CrossRefGoogle Scholar
  22. 22.
    Skorodumova NV, Simak SI, Lundqvist BI, Abrikosov IA, Johansson B (2002) Phys Rev Lett 89:166601CrossRefGoogle Scholar
  23. 23.
    Skorodumova NV, Ahuja R, Simak SI, Abrikosov IA, Johansson B, Lundqvist BI (2001) Phys Rev B 64:115108CrossRefGoogle Scholar
  24. 24.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  25. 25.
    Kresse G, Joubert J (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  26. 26.
    Yamazaki S, Matsui T, Ohashi T, Arita Y (2000) Solid State Ionics 136–137:913CrossRefGoogle Scholar
  27. 27.
    Krishnamurthy R, Yoon YG, Srolovitz DJ, Car R (2004) J Am Ceram Soc 87:1821CrossRefGoogle Scholar
  28. 28.
    Gschneider KA Jr (1985) J Less Common Metals 114:29CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2007

Authors and Affiliations

  • K. Muthukkumaran
    • 1
  • Roshan Bokalawela
    • 2
  • Tom Mathews
    • 3
  • S. Selladurai
    • 1
    Email author
  1. 1.Department of PhysicsAnna UniversityChennaiIndia
  2. 2.Homer L. Dodge Department of Physics and AstronomyThe University of OklahomaNormanUSA
  3. 3.Surface science Section, Materials Science DivisionIGCARKalpakkamIndia

Personalised recommendations