Advertisement

Journal of Materials Science

, Volume 42, Issue 16, pp 6749–6754 | Cite as

Thermal conductivity of ceramic particle filled polymer composites and theoretical predictions

  • Hong He
  • Renli FuEmail author
  • Yanchun Han
  • Yuan Shen
  • Xiufeng Song
Article

Abstract

Models and theories for predicting the thermal conductivity of polymer composites were discussed. Effective Medium Theory (EMT), Agari model and Nielsen model respectively are introduced and are applied as predictions for the thermal conductivity of ceramic particle filled polymer composites. Thermal conductivity of experimentally prepared Si3N4/epoxy composite and some data cited from the literature are discussed using the above theories. Feasibility of the three methods as a prediction in the whole volume fraction region of the filler from 0 to 1 was evaluated for a comparison. As a conclusion: both EMT and Nielsen model can give a well prediction for the thermal conductivity at a low volume fraction of the filler; Agari model give a better prediction in the whole range, but with larger error percentage.

Keywords

Thermal Conductivity Percolation Threshold Filler Particle Epoxy Composite Effective Medium Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by a grant from the National Nature Science Foundation of China (Grant No. 50472019).

References

  1. 1.
    Bae JW, Kim W, Cho SH, Lee SH (2003) J Mater Sci 35(23):5907CrossRefGoogle Scholar
  2. 2.
    Wong CP, Bollampally RS (1999) IEEE Trans Adv Packag 22(1):54CrossRefGoogle Scholar
  3. 3.
    Gonon P, Sylvestre A, Teysseyre J, Prior C (2001) J Mater Sci Mater Electron 12(2):81CrossRefGoogle Scholar
  4. 4.
    Kumbhat N, Raj PM, Pucha RV, Atmur S (2005) Proc Electron Compon Technol Conf 2:1364Google Scholar
  5. 5.
    Siu B (1995). IEEE Reg 10 Annu Int Conf Proc TENCON 234Google Scholar
  6. 6.
    Progelhof RC, Throne JL, Ruetsch RR (1976) Polym Eng Sci 16(9):615CrossRefGoogle Scholar
  7. 7.
    Procter P, Solc (1991) IEEE Trans Compon Hybrids Manuf Technol 14(4):708CrossRefGoogle Scholar
  8. 8.
    Nagai Y, Lai GC (1997) J Ceram Soc Jpn 105(3):197CrossRefGoogle Scholar
  9. 9.
    Kirkpatrick S (1973) Rev Mod Phys 45(4):574CrossRefGoogle Scholar
  10. 10.
    Ruschau GR, Yoshikawa S, Newnham RE (1992) J Appl Phys 72(3):953CrossRefGoogle Scholar
  11. 11.
    Bruggeman DAG (1935) Ann Phys 24:636CrossRefGoogle Scholar
  12. 12.
    Hsu WY, Berzins T (1985) J Polym Sci Polym Phy Ed 23(5):933CrossRefGoogle Scholar
  13. 13.
    Shin FG, Tsui WL, Yeung YY (1993) J Mater Sci Lett 12(20):1632CrossRefGoogle Scholar
  14. 14.
    Kutcherov V, Håkansson B, Ross RG, Backstrom G (1991) J Appl Phys 71(4):1732CrossRefGoogle Scholar
  15. 15.
    Håkansson B, Ross RG (1990) J Appl Phys 68(7):3285CrossRefGoogle Scholar
  16. 16.
    Carson JK, Lovatt SJ, Tanner DJ, Cleland AC (2005) Int J Heat Mass Transf 48:2150CrossRefGoogle Scholar
  17. 17.
    Hui PM, Zhang X, Markworth A, Stroud D (1999) J Mater Sci 34:5497CrossRefGoogle Scholar
  18. 18.
    Landauer R (1978) In: Garland JC, Tanner DB (eds) American institute of physics conference proceedings: electrical transport and optical properties of inhomogeneous media (American Institute of Physics, New York), No. 40Google Scholar
  19. 19.
    Agri Y, Uno T (1986) J Apply Polym Sci 32:5705CrossRefGoogle Scholar
  20. 20.
    Nielsen LE (1970) J Apply Phys 41(11):4626CrossRefGoogle Scholar
  21. 21.
    Nielsen LE (1974) Ind Eng Chem Fundam 13(1):17CrossRefGoogle Scholar
  22. 22.
    Nielsen LE (1973) J Appl Polym Sci 17:3819CrossRefGoogle Scholar
  23. 23.
    Tan JC, Tsipas SA, Golosnoy IO, Curran JA, Paul S, Clyne TW (2006) Surf Coat Technol 201:1414CrossRefGoogle Scholar
  24. 24.
    Curran JA, Clyne TW (2005) Surf Coat Technol 199:177CrossRefGoogle Scholar
  25. 25.
    Helsing J, Helte A (1990) J Appl Phys 69(6):3583CrossRefGoogle Scholar
  26. 26.
    Hasselman DPH, Johnson LF (1987) J Compos Mater 21:508CrossRefGoogle Scholar
  27. 27.
    Torquato S, Beasley JD, Chiew YC (1988) J Chem Phy 88(10):6540CrossRefGoogle Scholar
  28. 28.
    Ganapathy D, Singh K, Phelan PE, Prasher R (2005) Trans ASME J Heat Transf 127(6):553CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hong He
    • 1
  • Renli Fu
    • 1
    Email author
  • Yanchun Han
    • 1
  • Yuan Shen
    • 1
  • Xiufeng Song
    • 1
  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingP.R. China

Personalised recommendations