Journal of Materials Science

, Volume 42, Issue 17, pp 7478–7487 | Cite as

Material properties of portland cement paste with nano-montmorillonite

  • Ta-Peng ChangEmail author
  • Jeng-Ywan Shih
  • Kuo-Ming Yang
  • Tien-Chin Hsiao


The nano-montmorillonite, which has characteristics of high aspect ratio and interaction between polymer chains and dispersed nanolayers, has been widely used in the development of new reinforced nanocomposite polymers to improve their mechanical properties. Since a potential pozzolanic reaction may occur between Portland cement paste and high amount of silicon dioxide (SiO2) in nano-montmorillonite, the effects of introduction of montmorillonite to Portland cement-based material on the improvement of matrix properties of cement paste is of great interest in the construction industry. In this study, a liquid-form of nano-montmorillonite particle with a planar diameter of about 100 nm were incorporated into the Portland cement paste at five different dosages and analyzed at four different ages to identify the nanosizing effects on material properties of such cement-based composite. Experimental results show that the composite with 0.60% and 0.40% of added nano-montmorillonite by weight of cement have the optimum compressive strength and permeability coefficient, respectively, in which the increase of compressive strength is about 13.24%, and the decrease of permeability coefficient about 49.95%. Microstructural properties through the analyses of XRD, DSC, NMR, and MIP also indicate that the microstructures of cement paste with nano-montmorillonite contain more dense solid material and more stable bonding framework.


Nuclear Magnetic Resonance Compressive Strength Portland Cement Permeability Coefficient Calcium Silicate Hydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was performed under the auspices of the NSC, Taiwan, under Contract NSC-92–2211-E-011–052 which is highly appreciated.


  1. 1.
    Jortner J, Rao CNR (2002) Pure Appl Chem 74:1491Google Scholar
  2. 2.
    Pitkethly MJ (2004) Material Today 7:20CrossRefGoogle Scholar
  3. 3.
    Dellisanti F, Valdre G (2005) Appl Clay Sci 28:233CrossRefGoogle Scholar
  4. 4.
    Ahn T, Desai CS (1999) Inter J for Num Ana Meth In Geo 23:1893CrossRefGoogle Scholar
  5. 5.
    Ryan CR, Day SR (2002) Geo Spec Pub 1161:713Google Scholar
  6. 6.
    Fukushima Y, Inagaki S (1987) J Inclu Phen 5:473CrossRefGoogle Scholar
  7. 7.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1185Google Scholar
  8. 8.
    Lebaron PC, Wang Z, Pinnavaia TJ (1999) Appl Clay Sci 15:11CrossRefGoogle Scholar
  9. 9.
    Giannelis E (1996) Adv Mater 8:29CrossRefGoogle Scholar
  10. 10.
    Alexandre M, Dubois P (2000) Mater Sci Eng 28:1CrossRefGoogle Scholar
  11. 11.
    Taylor HFW (2000) Cement chemistry. Academic Press, London, p 305Google Scholar
  12. 12.
    Zhang X, Chang W, Zhang T, Ong CK (2000) J Am Cera Soc 83:2600CrossRefGoogle Scholar
  13. 13.
    He C, Makovicky E, Osbaeck B (1996) Appl Clay Sci 10:351CrossRefGoogle Scholar
  14. 14.
    Cabrera JG, Lynsdale CJ (1988) Mag Conc Res 40:177Google Scholar
  15. 15.
    Picandet V, Khelidj A, Bastian G (2001) Cem Conc Res 31:1525CrossRefGoogle Scholar
  16. 16.
    Loosveldt H, Lafhaj Z, Skoczylas F (2002) Cem Conc Res 32:1357CrossRefGoogle Scholar
  17. 17.
    Alshamsi AM, Imran HDA (2002) Cem Conc Res 32:923CrossRefGoogle Scholar
  18. 18.
    Dhir RK, Hewlett PC, Chan NY (1989) Mag Conc Res 41:87CrossRefGoogle Scholar
  19. 19.
    Joint Committee on Powder Diffraction Standards, JCPDS-International center for diffraction data (2000)Google Scholar
  20. 20.
    Sha W, O’Neill EA, Guo Z (1999) Cem Concr Res 29:1487CrossRefGoogle Scholar
  21. 21.
    Sha W, Pereira GB (2001) Cem Concr Comp 23:455CrossRefGoogle Scholar
  22. 22.
    Kurajica S, Bezjak A, Tkalcec E (1996) Therm Acta 288:123CrossRefGoogle Scholar
  23. 23.
    Lippmaa E, Magi M, Samoson A, Engelhardt G, Grimmer AR (1980) J Am Ceram Soc 102:4889Google Scholar
  24. 24.
    Ida T, Hibino H, Toraya H (2001) J Appl Cryst 34:144CrossRefGoogle Scholar
  25. 25.
    Justnes H, Meland I, Bjoergum JO, Krane J, Skjetne T (1989) SINTEF FCB Report, p 1Google Scholar
  26. 26.
    Johansson K, Larsson C, Antzutkin ON, Forsling W, Kota HR, Ronin V (1999) Cem Concr Res 29:1575CrossRefGoogle Scholar
  27. 27.
    Cong X, Kirkpatrick RJ (1996) Adv Cem Bas Mat 3:133CrossRefGoogle Scholar
  28. 28.
    Winslow DN (1984) Surf Colloid Sci 13:259Google Scholar
  29. 29.
    Good RJ (1984) Surf Colloid Sci 13:283Google Scholar
  30. 30.
    Jenkins RG, Rao MB (1984) Powder Technol 38:177CrossRefGoogle Scholar
  31. 31.
    Winslow DN, Diamond S (1970) J Mater 5:564Google Scholar
  32. 32.
    Ji X, Chan SYN, Feng N (1997) Cem Concr Res 27:1691CrossRefGoogle Scholar
  33. 33.
    Indelicato F (1990) Mater Struct 23:289CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ta-Peng Chang
    • 1
    Email author
  • Jeng-Ywan Shih
    • 1
  • Kuo-Ming Yang
    • 1
  • Tien-Chin Hsiao
    • 1
    • 2
  1. 1.Department of Construction EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan, R.O.C.
  2. 2.Department of Interior DesignChina University of TechnologyTaipeiTaiwan, R.O.C.

Personalised recommendations