Journal of Materials Science

, Volume 42, Issue 16, pp 6787–6791 | Cite as

Synthesis and piezoelectric properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics prepared by sol–gel auto-combustion method

Article

Abstracts

In this study, NaNO3, Bi(NO3)3·5H2O, Ba(NO3)2, Ti(OC4H9)4 and citric acid were successfully introduced to fabricate lead-free piezoelectric (Na0.5Bi0.5)0.94Ba0.06TiO3 [NBBT] nanopartical powders by a novel modified sol–gel auto-combustion method. The resultant products were characterized by the X-ray diffraction analysis and transmission electron microscope method. (Na0.5Bi0.5)0.94Ba0.06TiO+ Mn(NO3)2 [NBBTM] can be sintered by the traditional solid-state reaction, and the effects of NBBT doped different amounts of Mn(NO3)2 at various sintering temperatures upon phase formation, microstructure as well as piezoelectric properties were further studied. The experimental results show that it was helpful to control their chemical ingredients and microstructure to prepare nanocrystalline single phase NBBT powders. Where is the X-ray diffraction result of the corresponding ceramics to prove the existence of the mixing between rhombohedral and tetragonal phases at the MPB compositions. Doping 0.015 mol% Mn(NO3)2 into NBBT at 1,090 °C, piezoelectric constant (d33) and relative dielectric constant (εr) reach the superior value of 159pC/N and 1,304, respectively, and dielectric loss (tan δ) and electromechanical coupling factor (Kt) are 2.5% and 65%, respectively.

References

  1. 1.
    Smolensky GA, Isupov VA, Agramovskaya AI, Ktainik NN (1961) Sov Phys Solid State 2:2651Google Scholar
  2. 2.
    Buhrer CF (1962) J Chem Phys 36:798CrossRefGoogle Scholar
  3. 3.
    Chiang Y-M, Farrey GW, Soukhojak AN (1998) Appl Phys Lett 73:3684CrossRefGoogle Scholar
  4. 4.
    Park SE, Hong KS (1996) J Appl Phys 79:383CrossRefGoogle Scholar
  5. 5.
    Smolensky GA, Isupov VA, Agranovskaya AI, Krainik NN, Fizika (1961) Phys Solid State 2:2651Google Scholar
  6. 6.
    Takenaka T, Maruyama K, Sakata K (1991) Jpn J Appl Phys 30(9B):2236CrossRefGoogle Scholar
  7. 7.
    Takenaka T, Okuda T, Takegahara K (1997) Ferroelectrics 196:175CrossRefGoogle Scholar
  8. 8.
    Takenaka T, Nagata H (1998) Jpn J Appl Phys 37–1(9B):5311Google Scholar
  9. 9.
    Herabut A, Safari A (1997) J Am Ceram Soc 80(11):2954CrossRefGoogle Scholar
  10. 10.
    Sakate K, Masuda Y (1974) Ferroelectrics 21:347CrossRefGoogle Scholar
  11. 11.
    Nagata H, Takenaka T (2001) J Eur Ceram Soc 21:1299CrossRefGoogle Scholar
  12. 12.
    Zhou XY, Gu HS, Wang Y, Li WY, Zhou TS (2005) Mater Lett 59:1649CrossRefGoogle Scholar
  13. 13.
    Kaewkamnerd N, Takenaka T, Sakata K, Toda K (1997) Sensor Mater 9:47Google Scholar
  14. 14.
    West DL, Payne DA (2003) J Am Ceram Soc 86:192CrossRefGoogle Scholar
  15. 15.
    Pookmanee P, Rujijanagul G, Ananta S, Heimann RB, Phanichphant S (2002) J Eur Ceram Soc 24:517CrossRefGoogle Scholar
  16. 16.
    Hao JJ, Wang XH, Chen RZ, Li LT (2005) Mater Chem Phys 90:282CrossRefGoogle Scholar
  17. 17.
    Nagata H, Taknaka T (2001) J Eur Ceram Soc 21(10–l1):1299CrossRefGoogle Scholar
  18. 18.
    Gomah-Pettry J, Said S, Marchet P et a1 (2004) J Eur Ceram Soc 24(6):1165CrossRefGoogle Scholar
  19. 19.
    Zhou X-Y, Gu H-S, Li W-Y (2005) J Cent South Univ Technol 12(3):266CrossRefGoogle Scholar
  20. 20.
    Nadoliisky MM, Toshey SD, Vasileva TK (1984) Phys Station Solid 86(a):K145Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jun-Gang Hou
    • 1
  • Yuan-Fang Qu
    • 1
  • Wei-Bing Ma
    • 1
  • Dan Shan
    • 1
  1. 1.Key laboratory for Advanced Ceramic and Machining Technology of ministry of EducationTianjin UniversityTianjinP.R. China

Personalised recommendations