Journal of Materials Science

, Volume 42, Issue 16, pp 6809–6818 | Cite as

Solute adsorption and exclusion studies of the structure of never-dried and re-wetted cellulosic fibres

  • R. N. IbbettEmail author
  • S. Kaenthong
  • D. A. S. Phillips
  • M. A. Wilding


The total water capacity of a series of never-dried and re-wetted cellulosic fibres has been shown to correlate with the accessible volume described by a thermodynamic model. The model was applied to interpret the adsorption behaviour of a range of reactive dyes in electrolyte solutions and was successful in accounting for differences in fibre anionic charge. Comparative solute exclusion data indicated the existence of a population of very small spaces in never-dried cellulosic fibres, which may be associated with water disrupting the cellulose \({1\overline{1}0}\) crystal planes. Such intra-crystalline spaces may provide sites for uptake of planar substantive dyes and may also be accessible to sodium ions. The study showed that never-dried lyocell undergoes a large reduction in total wet capacity following initial drying, which is believed to be due to both exudation of crystal water and to inter-fibrillar crystallisation. This crystallisation mechanism may not be so effective for viscose and modal, which have poorer structural organization. Re-wetted lyocell exhibits high dye adsorption, which may result from the development of a uniform fibrillar morphology with a high surface area. This structural aspect is not expressed by the thermodynamic model.


Cellulosic Fibre Total Pore Volume Accessible Volume Inverse Size Exclusion Chromatography Solute Exclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank The Christian Doppler Society for financial support, and also Lenzing AG, for financial support and for supply of fibre samples. Thanks also to Dr Christian Schuster for helpful discussions.


  1. 1.
    Weigel P, Fink H-P, Walenta E, Ganster J, Remde H (1997) Cell Chem Technol 31:321Google Scholar
  2. 2.
    Kaenthong S, Phillips SAD, Renfrew AHM, Wilding AM (2005) Colouration Technol 120(6):316Google Scholar
  3. 3.
    Bredereck K, Stefani H-P, Beringer J, Schulz F, Commarmot A (2003) Melliand Textilberichte 84(1–2):58Google Scholar
  4. 4.
    Kaenthong S, Phillips SAD, Renfrew AHM, Wilding AM (2005) Colouration Technol 121(1):45CrossRefGoogle Scholar
  5. 5.
    Bredereck K, Gruber M, Utterbach A, Schulz F (1996) Textilveredlung 31:1Google Scholar
  6. 6.
    Vickerstaff T (1954) The physical chemistry of dyeing, Chap VII. Oliver and Boyd, LondonGoogle Scholar
  7. 7.
    Vickers ME, Briggs PN, Ibbett RN, Payne J, Smith SB (2000) Polymer 42:241Google Scholar
  8. 8.
    Abbott LC, Batchelor NS, Jansen L, Oakes J, Lindsay-Smith RJ, Moore NJ (2004) New J Chem 28(7):815CrossRefGoogle Scholar
  9. 9.
    Sivaraja SR, Srinivasan G, Baddi TN (1968) Textile Res J (July):693Google Scholar
  10. 10.
    Sasaki H, Donkai N, Takagishi T (2004) Textile Res J 74(6):509CrossRefGoogle Scholar
  11. 11.
    Bae S-H, Motomura H, Morita Z (1997) Dyes Pigments 34(1):37CrossRefGoogle Scholar
  12. 12.
    Marshall WJ, Peters HR (1947) J Soc Dyers Colourists 63:446Google Scholar
  13. 13.
    Daruwalla HE, D’Silva AP (1963) Textile Res J 59:40CrossRefGoogle Scholar
  14. 14.
    Sivarajalyer SR, Raghunath R (1989) Proc Natl Acad Sci India Sec A Phys Sci 59(1):37Google Scholar
  15. 15.
    Crawshaw J, Cameron ER (2000) Polymer 41(12):4691CrossRefGoogle Scholar
  16. 16.
    Moss CE, Butler EC, Muller M, Cameron RE (2002) J Appl Polym Sci 83:2799CrossRefGoogle Scholar
  17. 17.
    Bredereck K, Gruber M (1995) Melliand Textilberichte 76:684Google Scholar
  18. 18.
    Bredereck K, Schulz F, Otterbach A (1997) Mellian Textilberichte 78(10):103Google Scholar
  19. 19.
    Bredereck K, Saafan A (1981) Die Angewandte Makromolekulare Chemie 95:13 (Nr. 1482)CrossRefGoogle Scholar
  20. 20.
    Stone EJ, Scallan MA (1968) Cellulose Chem Technol 2:343Google Scholar
  21. 21.
    Stone EJ, Scallan MA, Abrahamson B (1968) Svensk Papperstidning 71(19):187Google Scholar
  22. 22.
    Peters RH, Vickerstaff T (1948) Proc Roy Soc (Lond) A192:292Google Scholar
  23. 23.
    Carillo F, Lis JM (2002) Dyes Pigments 53:129CrossRefGoogle Scholar
  24. 24.
    Ibbett RN, Phillips AD, Kaenthong S (2006) Dyes Pigments 71:168CrossRefGoogle Scholar
  25. 25.
    Murtagh V, Taylor AJ (2004) Dyes Pigments 63:17CrossRefGoogle Scholar
  26. 26.
    Morton WE, Hearle SWJ (1993) Physical properties of textile fibres, 3rd edn, Chap 10. William Heinemann Ltd, in association with The Textile InstituteGoogle Scholar
  27. 27.
    Davidson GF (1948) J Textile Inst 39:T65CrossRefGoogle Scholar
  28. 28.
    Kaewprasit C, Hequet C, Abidi N, Gourlot J-P (1998) J Cotton Sci 2:164Google Scholar
  29. 29.
    Lin KJ, Ladisch HM, Patterson AJ, Noller HC (1987) Biotechnol Bioeng 29:976CrossRefGoogle Scholar
  30. 30.
    Gamma MF, Teixeira AJ, Mota M (1994) Biotechnol Bioeng 43:381CrossRefGoogle Scholar
  31. 31.
    Squire PG (1981) Chromatogr J 210:433CrossRefGoogle Scholar
  32. 32.
    Dork L, Sahagian D, Proussevitch A (1998) J Volcanol Geoth Res 84:173CrossRefGoogle Scholar
  33. 33.
    Fras L, Laine J, Stenius P, Stana K-Kleinschek, Ribitsch V, Dolece V (2004) J Appl Polym Sci 92:3186CrossRefGoogle Scholar
  34. 34.
    McGregor R (1972) Textile Res J 68:536CrossRefGoogle Scholar
  35. 35.
    Fink H-P, Weigel P, Purs JH, Ganster J (2001) Prog Polym Sci 26:1473CrossRefGoogle Scholar
  36. 36.
    Dube M, Blackwell HR (1983) TAPPI Proceedings of the international conference on dissolving and speciality pulps, Jan 1983Google Scholar
  37. 37.
    Bredereck K (2005) Rev Prog Colouration 35:39Google Scholar
  38. 38.
    Peter H, Priest MH (1968) In: Mark HF, Atlas SM, Cernia E (eds) Man-made fibers: science and technology, Vol II, Chap 2. Interscience Publishers, New YorkGoogle Scholar
  39. 39.
    Moncrief WR (1970) Man-made fibres, 5th edn, Chap 13. Haywood Books, LondonGoogle Scholar
  40. 40.
    Fujita H (1990) Polymer solutions: studies in polymer science, Vol 9, Chap 10.2. Elisvier BVGoogle Scholar
  41. 41.
    Ibrahim MD, Mondal H, Akira K (2001) . J Appl Polym Sci 79:1726CrossRefGoogle Scholar
  42. 42.
    Franks EN, Varga JK (1980) US Patent No. 4,196, April 1980, 282Google Scholar
  43. 43.
    Lenz J, Schurz J, Eichinger D (1994) Lenziner Berichte 9:19Google Scholar
  44. 44.
    Lenz J, Schurz J, Wrentschur E (1992) Acta Polym 43:12CrossRefGoogle Scholar
  45. 45.
    Porter JJ (1993) Textile Chemist Colourist 25:4Google Scholar
  46. 46.
    Yang Y, Lan T, Li S (1995) Textile Chemist Colourist 27(2):29Google Scholar
  47. 47.
    Ibbett RN, Phillips AD, Kaenthong S (available online 28th Sept 2006) Dyes PigmentsGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • R. N. Ibbett
    • 1
    Email author
  • S. Kaenthong
    • 1
  • D. A. S. Phillips
    • 1
  • M. A. Wilding
    • 1
  1. 1.Christian Doppler Laboratory for Fibre and Textile Chemistry in Cellulosics, School of MaterialsUniversity of ManchesterManchesterUK

Personalised recommendations