Advertisement

Journal of Materials Science

, Volume 42, Issue 8, pp 2837–2843 | Cite as

Silylation of layered zirconium hydroxy phosphate and its porous properties

  • Takahiro Takei
  • Yoshinori Yonesaki
  • Nobuhiro Kumada
  • Nobukazu Kinomura
Article

Abstract

Silylation of layered zirconium hydroxy phosphate was carried out and its porous properties were examined. The novel layered hydroxy phosphate was protonated and intercalated by using octylamine to expand the interlayer space. Then, dimethyldichlorosilane, dichloromethylvinylsilane or 1,2-bisdimethylchlorosilylethane were used to silylate the interlayer space. In order to form micropores between layers, the silylated compounds were heated at the range from 100 °C to 1,000 °C to measure high-temperature XRD patterns. During heating, the interlayer spacing decreased at around 300 and 600–700 °C. The specific surface area reached around 180 m2/g as maximum area at 300 °C, while layered structure collapsed gradually above 400 °C. Micropore volume also became maximum at 300 °C.

Keywords

Interlayer Spacing Metal Phosphate Octylamine Inorganic Layer Zirconium Oxychloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Zampronio EC, Oliveira HP (2004) Mater Res Bull 39:1525CrossRefGoogle Scholar
  2. 2.
    Sumida T, Takahara Y, Abe R, Hara M, Kondo JN, Domen K, Kakihana M, Yoshimura M (2001) Phys Chem Chem Phys 3:640CrossRefGoogle Scholar
  3. 3.
    Bortun AI, Khainakov SA, Bortun LN, Jaimez E, García JR, Clearfield A (1999) Mater Res Bull 34:921CrossRefGoogle Scholar
  4. 4.
    Li B, Hu Y, Zhang R, Chen Z, Fan W (2003) Mater Res Bull 38:1567CrossRefGoogle Scholar
  5. 5.
    Ebina Y, Sasaki T, Watanabe M (2002) Solid State Ionics 151:177CrossRefGoogle Scholar
  6. 6.
    Bizeto MA, Constantino VRL (2004) Mater Res Bull 39:1811CrossRefGoogle Scholar
  7. 7.
    Wang J, Yin S, Sato T (2004) Chem Lett 33:1104CrossRefGoogle Scholar
  8. 8.
    Kaschak DM, Johnson SA, Hooks DE, Kim H-N, Ward MD, Mallouk TE (1998) J Am Chem Soc 120:10887CrossRefGoogle Scholar
  9. 9.
    Alberti G (1978) Acc Chem Res 11:163CrossRefGoogle Scholar
  10. 10.
    Christensen AN, Andersenek EK, Andersen IGK, Alberti G, Nielsen M, Lehmann MS (1990) Acta Chem Scand 44:865CrossRefGoogle Scholar
  11. 11.
    Nakayama H, Eguchi T, Nakayama N, Yamaguchi S, Danjo M, Tsuhako M (1997) J Mater Chem 7:1063CrossRefGoogle Scholar
  12. 12.
    Clearfield A, Smith G (1969) Inorg Chem 8:431CrossRefGoogle Scholar
  13. 13.
    Kinomura N, Fukutomi Y, Kumada N, Suzuki T (1999) Phos Res Bull 10:189CrossRefGoogle Scholar
  14. 14.
    Alberti G, Constantino U, Allulli S, Tomassini N (1978) J Inorg Nucl Chem 40:1113CrossRefGoogle Scholar
  15. 15.
    Clearfield A (1988) Chem Rev 88:125CrossRefGoogle Scholar
  16. 16.
    Kim H-N, Keller SW, Mallouk TE (1997) Chem Mater 9:1414CrossRefGoogle Scholar
  17. 17.
    Raveau B (1987) Rev Inorg Chem 9:37CrossRefGoogle Scholar
  18. 18.
    Wang D, Yu R, Kumada N, Kinomura N (2000) Chem Mater 12:956CrossRefGoogle Scholar
  19. 19.
    Takei T, Sekijima K, Kumada N, Kinomura N (2004) Solid State Ionics 170:111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Takahiro Takei
    • 1
  • Yoshinori Yonesaki
    • 1
  • Nobuhiro Kumada
    • 1
  • Nobukazu Kinomura
    • 1
  1. 1.Center for Crystal Science and Technology, Faculty of EngineeringUniversity of YamanashiYamanashiJapan

Personalised recommendations